Abstract:
The method includes: processing a PSNR of each segment of each sample video, determining an ePSNR predictive model according to preset parameters obtained after processing and mean opinion scores of all sample videos, and determining an enhanced mean opinion score eMOS predictive model according to the predictive model. Then, for any video that needs to be evaluated, QoE of the video that needs to be evaluated may be determined according to only the enhanced MOS predictive model and an ePSNR determined according to the ePSNR predictive model. In comparison with a prior-art method for determining QoE in which only a mean value of PERNs of all frames is considered, in this process of measuring quality of experience of a mobile video service, as many as factors that affect a PSNR of a video are considered. Therefore, accurate measurement of quality of experience of an HAS video service can be implemented.
Abstract:
The method includes: processing a PSNR of each segment of each sample video, determining an ePSNR predictive model according to preset parameters obtained after processing and mean opinion scores of all sample videos, and determining an enhanced mean opinion score eMOS predictive model according to the predictive model. Then, for any video that needs to be evaluated, QoE of the video that needs to be evaluated may be determined according to only the enhanced MOS predictive model and an ePSNR determined according to the ePSNR predictive model. In comparison with a prior-art method for determining QoE in which only a mean value of PERNs of all frames is considered, in this process of measuring quality of experience of a mobile video service, as many as factors that affect a PSNR of a video are considered. Therefore, accurate measurement of quality of experience of an HAS video service can be implemented.