Abstract:
Measuring audience size for a digital sign comprises generating a plurality of paths, one for each face detected in a first sequence of video frames captured by a camera proximate the digital sign, and generating a zone in the sequence of video frames through which passes a threshold number of the paths. Motion and direction of motion within the zone is then measured in a second sequence of video frames to calculate the audience size that passes through the zone in the second sequence of video frames.
Abstract:
Measuring audience size for a digital sign comprises generating a plurality of paths, one for each face detected in a first sequence of video frames captured by a camera proximate the digital sign, and generating a zone in the sequence of video frames through which passes a threshold number of the paths. Motion and direction of motion within the zone is then measured in a second sequence of video frames to calculate the audience size that passes through the zone in the second sequence of video frames.
Abstract:
The present disclosure is directed to a parallel face detection and tracking system. In general, embodiments consistent with the present disclosure may be configured to distribute the processing load associated with the detection and tracking of different faces in an image between multiple data processors. If needed, processing load balancing and/or protective features may be implemented to prevent the data processors from becoming overwhelmed. In one embodiment, a device may comprise, for example, a communication module and at least one processing module. The communication module may be configured to receive at least image information that may be processed by a plurality of data processors in the data processing module. For example, each of the data processors may be configured to detect faces in the image information and/or track detected faces in the image information based on at least one criterion.