Abstract:
A compensation margin control device, an organic light emitting display device, and a driving method thereof according to the present disclosure provide an effect to improve the image quality by ensuring a margin of a negative bios shift compensation region of a driving transistor of a non-driven sub-pixel without affecting a gray level representation and positive compensation.
Abstract:
A display device includes a substrate which includes a display area and a non-display area adjacent to the display area, a first planarization layer which is at least partially disposed in the display area, a second planarization layer which is disposed in the non-display area and is spaced apart from the first planarization layer, a contact unit disposed between the first planarization layer and the second planarization layer in the non-display area, and a cathode which extends from the display area to the non-display area to be electrically connected to the contact unit. Accordingly, the first planarization layer and the second planarization layer are spaced apart from each other so that a path through which moisture permeates into the display area through the second planarization layer may be blocked.
Abstract:
A display device includes a substrate, a first conductive layer on the substrate, a buffer layer on the first conductive layer, a first semiconductor layer on the buffer layer, a gate insulating layer on the first semiconductor layer and the buffer layer and a second conductive layer on the gate insulating layer, wherein the second conductive layer is in contact with the first conductive layer and the first semiconductor layer through a first contact hole on the buffer layer and the gate insulating layer.
Abstract:
An electroluminescence display and a method of managing defective pixels thereon are provided. Defective pixels are detected from the pixels, based on sensing results on the electrical characteristics of a driving element, and defect candidates are selected from among the pixels within a compensation range in which the electrical characteristics of the driving element can be compensated by a compensation value obtained based on the sensing results on the electrical characteristics of the driving element.
Abstract:
A display device for preventing a damage of an electrode contact portion is disclosed. The display device includes a display area, on which an organic light emitting diode including a first electrode, an organic layer, and a second electrode is positioned, and a non-display area positioned outside the display area. The non-display area includes an electrode contact portion in which the second electrode and a low potential voltage line are connected to each other through at least one connection pattern. The electrode contact portion includes a passivation layer including a plurality of passivation holes exposing the at least one connection pattern, and an overcoat layer including an overcoat hole exposing the passivation layer.