Abstract:
A display device include a substrate on which a plurality of first sub-pixels disposed in first columns and a plurality of second sub-pixels disposed in second columns are defined; a plurality of data lines disposed on one sides of the plurality of first sub-pixels and the other sides of the plurality of second sub-pixels; and a plurality of parking voltage lines disposed between the plurality of first sub-pixels and the plurality of second sub-pixels, wherein the plurality of parking voltage lines are configured to be electrically connected to some of the plurality of data lines. Accordingly, by applying the same parking voltage to the parking voltage lines and the data lines during a blank frame, flicker can be reduced.
Abstract:
Disclosed are an organic light emitting diode device, and a method for fabricating the same. The organic light emitting diode device comprises a non-active area formed outside an active area of a substrate; a switching thin film transistor and a driving thin film transistor at each of the pixel regions; a planarization layer on the substrate; a first electrode on the planarization layer; a bank formed in the non-active area outside each pixel region; an organic light emitting layer on the first electrode; a second electrode on an entire surface of the substrate; a first passivation layer on the substrate; an organic layer on the first passivation layer; a second passivation layer on the organic layer and the first passivation layer; a barrier film disposed to face the substrate.
Abstract:
Disclosed is an electroluminescent display device. The electroluminescent display device includes a display area and a non-display area. And the electroluminescent display device includes a display panel including a plurality of pixel lines each including a plurality of pixel circuits.
Abstract:
A flexible display panel, and particularly, to a flexible display panel which is bendable, not an existing glass substrate, a fabrication method thereof, and an image display terminal unit using a flexible display panel are provided.In the case of the flexible display panel, the fabrication method, and the image display terminal unit, the flexible display panel is implemented with a plastic substrate, rather than the conventional glass substrate, and a portion of the non-active area of the display panel is cut to form a cutout portion to insert modules of the image display terminal unit into the cutout portion to thus reduce a receiving space of the lower housing, thereby minimizing a width of the bezel region.
Abstract:
Embodiments of the present disclosure relate to a display panel and a display device, and more particularly, a display panel and a display device capable of reducing a bezel area by reducing the number of subpixels per unit area of a second display area adjacent to a first display area in which the light-receiving device is located.
Abstract:
Embodiments of the present disclosure relate to a display panel and a display device, and more particularly, a display panel and a display device capable of reducing a bezel area by reducing the number of subpixels per unit area of a second display area adjacent to a first display area in which the light-receiving device is located
Abstract:
A light emitting display apparatus includes a pixel driving circuit including a driving transistor and an anode reset capacitor connected to a gate of the driving transistor and a light emitting device configured to emit light with a current supplied through the driving transistor. An anode reset period, where a data voltage is not supplied to the driving transistor, is between refresh periods where the light emitting device emits the light with the data voltage supplied to the driving transistor, and an anode reset voltage supplied to the anode reset capacitor in the refresh period is higher than an initial voltage which is input to the gate of the driving transistor in the refresh period.
Abstract:
A light emitting display apparatus includes a pixel driving circuit including a driving transistor and an anode reset capacitor connected to a gate of the driving transistor and a light emitting device configured to emit light with a current supplied through the driving transistor. An anode reset period, where a data voltage is not supplied to the driving transistor, is between refresh periods where the light emitting device emits the light with the data voltage supplied to the driving transistor, and an anode reset voltage supplied to the anode reset capacitor in the refresh period is higher than an initial voltage which is input to the gate of the driving transistor in the refresh period.
Abstract:
Disclosed is an electroluminescent display device. The electroluminescent display device includes a display area and a non-display area. And the electroluminescent display device includes a display panel including a plurality of pixel lines each including a plurality of pixel circuits.
Abstract:
A light emitting display panel and a light emitting display apparatus using the same are disclosed, in which a gate driver is built in a display area and a low voltage supply line is provided in a non-display area. Each pixel in the display area includes a light emitting diode and a pixel driving circuit for driving the light emitting diode. The light emitting diode is connected with a high voltage line to which a first driving voltage is supplied, and is connected with a display area low voltage supply line to which a second driving voltage is supplied.