Abstract:
A device comprises: a classical computing device; a quantum computing device; a memory for storing one or more programs; and a processor communicating with the memory to execute the one or more programs and control the classical computing device and the quantum computing device. The processor may: obtain the boundary condition and respective initial values of a plurality of points of a geometric structure with respect to an object, by means of the classical computing device; obtain solutions to respective multi-physics problems of the plurality of points on the basis of the obtained boundary condition and respective initial values of the plurality of points, by means of the quantum computing device; and map the obtained solutions to the multi-physics problems to respective plurality of points by means of the classical computing device.
Abstract:
A surface-modified separation membrane of the present invention comprises a separation membrane, and a coating layer formed on the surface of the separation membrane for improving the contamination resistance and chemical resistance of the separation membrane, wherein the coating layer is implemented with a nanoscale thickness of the coating layer in order to inhibit a decrease in permeation flux of the separation membrane before and after coating the coating layer, and comprises: dopamine for providing, to the coating layer, an adsorption force to be bound stably with the separation membrane; and a hydrophilic material which is bound to the dopamine through secondary bonding or cross-linking containing a hydrogen bond in order to inhibit the deterioration of the durability of the coating layer, and provides hydrophilicity to the surface of the separation membrane in order to protect the separation membrane from hydrophobic contaminants. A method for modifying the surface of a separation membrane of the present invention comprises the steps of: injecting a separation membrane to be surface-modified into a reactor; adding a mixture solution, which is formed by adding a hydrophilic material to a Tris-buffer solution having an adjusted pH range at which dopamine reacts and stirring the same, to the reactor; adding dopamine and an initiator, which induces the cross-linking of the hydrophilic material and dopamine, to the reactor at a predetermined temperature range; and forming a coating layer comprising dopamine and the hydrophilic material on the separation membrane through thermal cross-linking at the predetermined temperature range while injecting oxygen into the reactor.
Abstract:
Disclosed are a graphene membrane and a method for manufacturing the same. The graphene membrane includes a graphene layer having a porous pattern including a plurality of pores having a size of 5 to 100 nm and a supporter configured to support the graphene layer and including a plurality of pores having a greater size than the pores of the graphene layer.