Abstract:
Method, device, and system for setting an operating parameter of a radio receiver included in a radio based on a predicted radio signal environment. One method includes determining an operating location of the radio. The method also includes determining a transmission characteristic of at least one base station. The method further includes predicting, with an electronic processor, the radio signal environment of the radio receiver based on the transmission characteristic of the at least one base station and the operating location of the radio. The method also includes setting the operating parameter of the radio receiver based on the radio signal environment.
Abstract:
Systems and methods for intelligent interference mitigation for time division multiplexing broadband networks. One example embodiments of a wireless base station includes an electronic processor and a transceiver coupled to the electronic processor. The electronic processor is configured to operate to communicate wirelessly via the transceiver with subscriber units utilizing time division duplexing (TDD) and a first frame configuration, and characterize each of a plurality of sub-frames of the first frame configuration as being either conflicting or non-conflicting. The electronic processor is configured to estimate link conditions for the subscriber units and determine, based on the link conditions, whether the subscriber units are resilient or non-resilient. The electronic processor is configured to assign resilient subscriber units to conflicting sub-frames and non-resilient subscriber units to non-conflicting sub-frames.
Abstract:
Methods and systems for improving adjacent channel rejection performance in a wireless signal by a radio device in a mobile network. In one embodiment, a mobile radio network includes a first radio device (e.g., a subscriber), a second radio device, and a fixed radio apparatus (e.g., a base station or repeater). The first radio device receives a first channel signal having a first frequency offset with respect to a reference frequency. The first channel signal is associated with the second radio device. The first radio device measures the first frequency offset, determines a second frequency offset for a second channel signal, and transmits the second channel signal with the second frequency offset.
Abstract:
Methods and systems for improving adjacent channel rejection performance in a wireless signal by a radio device in a mobile network. In one embodiment, a mobile radio network includes a first radio device (e.g., a subscriber), a second radio device, and a fixed radio apparatus (e.g., a base station or repeater). The first radio device receives a first channel signal having a first frequency offset with respect to a reference frequency. The first channel signal is associated with the second radio device. The first radio device measures the first frequency offset, determines a second frequency offset for a second channel signal, and transmits the second channel signal with the second frequency offset.
Abstract:
Improving signal quality by sampling an intermediate frequency signal by an analog-to-digital converter (ADC) and determining spectral characteristic data of the output signal of the ADC, and processing the spectral characteristic data to identify blocking signals and blocking spur signals that interfere with any desired signals. An adjustment is made to the frequency of one or more oscillators to reduce the interference resulting from the blocking signals if a ratio of the desired signal level to the total interfering blocker spur level is below a threshold.
Abstract:
Systems and methods for intelligent interference mitigation for time division multiplexing broadband networks. One example embodiments of a wireless base station includes an electronic processor and a transceiver coupled to the electronic processor. The electronic processor is configured to operate to communicate wirelessly via the transceiver with subscriber units utilizing time division duplexing (TDD) and a first frame configuration, and characterize each of a plurality of sub-frames of the first frame configuration as being either conflicting or non-conflicting. The electronic processor is configured to estimate link conditions for the subscriber units and determine, based on the link conditions, whether the subscriber units are resilient or non-resilient. The electronic processor is configured to assign resilient subscriber units to conflicting sub-frames and non-resilient subscriber units to non-conflicting sub-frames.
Abstract:
Method, device, and system for setting an operating parameter of a radio receiver included in a radio based on a predicted radio signal environment. One method includes determining an operating location of the radio. The method also includes determining a transmission characteristic of at least one base station. The method further includes predicting, with an electronic processor, the radio signal environment of the radio receiver based on the transmission characteristic of the at least one base station and the operating location of the radio. The method also includes setting the operating parameter of the radio receiver based on the radio signal environment.
Abstract:
A method of and relay for connecting communication networks. In one example, the relay is a non-collocated relay that includes a plurality of antennas including a first antenna and a second antenna and an antenna scanner connected to the plurality of antennas. The antenna scanner is configured to survey the plurality of antennas for signals from a first base station of a first incident area network and a second base station of a second incident area network. The non-collocated relay also includes a first user device and a second user device communicatively coupled to each other and an electronic processor. The electronic processor is configured to connect the first antenna receiving a signal from the first base station to the first user device and connect the second antenna receiving a signal from the second base station to the second user device.
Abstract:
Improving signal quality by sampling an intermediate frequency signal by an analog-to-digital converter (ADC) and determining spectral characteristic data of the output signal of the ADC, and processing the spectral characteristic data to identify blocking signals and blocking spur signals that interfere with any desired signals. An adjustment is made to the frequency of one or more oscillators to reduce the interference resulting from the blocking signals if a ratio of the desired signal level to the total interfering blocker spur level is below a threshold.
Abstract:
A method and system for assigning a frequency resource allocation to a communication device. The method includes determining a communication device model associated with the communication device. The method includes determining at least one interference emission threshold associated with a frequency range. The method includes receiving at least one communication device emission level based on at least the communication device model. The method includes determining, with a resource scheduler, a frequency resource allocation for the communication device to operate in a communication channel within the frequency range based on the at least one interference emission threshold and the at least one communication device emission level, wherein the at least one communication device emission level is not greater than the at least one interference emission threshold for the frequency range. The method further includes assigning the frequency resource allocation to the communication device.