Abstract:
A super-resolution method for generating a high-resolution (HR) image from a low-resolution (LR) blurred image is provided. The method is based on a transform-invariant directional total variation (TI-DTV) approach with Schattenp=1/2 (S1/2-norm) and L1/2-norm penalties. The S1/2-norm and the L1/2-norm are used to induce a lower-rank component and a sparse component of the LR blurred image so as to determine an affine transform to be adopted in the TI-DTV approach. In particular, the affine transform is determined such that a weighted sum of the S1/2-norm and the L1/2-norm is substantially minimized. Based on the alternating direction method of multipliers (ADMM), an iterative algorithm is developed to determine the affine transform. The determined affine transform is used to transform a candidate HR image to a transformed image used in computing a directional total variation (DTV), which is involved in determining the HR image.
Abstract:
A super-resolution method for generating a high-resolution (HR) image from a low-resolution (LR) blurred image is provided. The method is based on a transform-invariant directional total variation (TI-DTV) approach with Schattenp=1/2 (S1/2-norm) and L1/2-norm penalties. The S1/2-norm and the L1/2-norm are used to induce a lower-rank component and a sparse component of the LR blurred image so as to determine an affine transform to be adopted in the TI-DTV approach. In particular, the affine transform is determined such that a weighted sum of the S1/2-norm and the L1/2-norm is substantially minimized. Based on the alternating direction method of multipliers (ADMM), an iterative algorithm is developed to determine the affine transform. The determined affine transform is used to transform a candidate HR image to a transformed image used in computing a directional total variation (DTV), which is involved in determining the HR image.