Abstract:
A system for blending a hybrid radio signal provides reduced volume level transitions during blending from an analog component of the hybrid signal to the digital component by adjusting blend and cross-fade variables, as well as setting a hysteresis mode to prevent undesirable jumping from digital mode back to analog mode sequentially. The system also compensates for digital AM frequency quality issues by adjusting a filter bandwidth when the transceiver blends the AM signal from analog to digital mode.
Abstract:
A system that blends a hybrid radio signal may provide reduced audio content skipping and may determine an audio correlation between analog and digital signal components in the hybrid radio signal before blending from the analog signal component to the digital signal component. The system may reduce volume level transitions during blending by adjustment of blend and cross-fade variables, as well as setting a hysteresis mode to prevent undesirable sequential jumping from digital mode back to analog mode. The system also may compensate for digital AM frequency quality issues by adjustment of a filter bandwidth when the receiver blends an AM signal from analog to digital mode.
Abstract:
A radio receiver having multiple AM/FM tuners. A first tuner and a second tuner may be connected with an antenna for generating a first and second composite audio output signal. A dual input digital signal processor may be connected with the first tuner and the second tuner. The first and second composite audio output signals are processed by the dual input digital signal processor to generate a first audio output signal and a second audio output signal. A first audio power amplifier may be connected with the dual input digital signal processor for receiving the first audio output signal and a second audio power amplifier may be connected with the dual input digital signal processor for receiving the second audio output signal.
Abstract:
A system for blending a hybrid radio signal provides reduced volume level transitions during blending from an analog component of the hybrid signal to the digital component by adjusting blend and cross-fade variables, as well as setting a hysteresis mode to prevent undesirable jumping from digital mode back to analog mode sequentially. The system also compensates for digital AM frequency quality issues by adjusting a filter bandwidth when the transceiver blends the AM signal from analog to digital mode.
Abstract:
A system that blends a hybrid radio signal may provide reduced audio content skipping and may determine an audio correlation between analog and digital signal components in the hybrid radio signal before blending from the analog signal component to the digital signal component. The system may reduce volume level transitions during blending by adjustment of blend and cross-fade variables, as well as setting a hysteresis mode to prevent undesirable sequential jumping from digital mode back to analog mode. The system also may compensate for digital AM frequency quality issues by adjustment of a filter bandwidth when the receiver blends an AM signal from analog to digital mode.
Abstract:
A radio receiver having multiple AM/FM tuners. A first tuner and a second tuner may be connected with an antenna for generating a first and second composite audio output signal. A dual input digital signal processor may be connected with the first tuner and the second tuner. The first and second composite audio output signals are processed by the dual input digital signal processor to generate a first audio output signal and a second audio output signal. A first audio power amplifier may be connected with the dual input digital signal processor for receiving the first audio output signal and a second audio power amplifier may be connected with the dual input digital signal processor for receiving the second audio output signal.