摘要:
Method for transforming geologic data relating to a subsurface region between a geophysical depth domain and a geologic age domain. A set of topologically consistent surfaces (252a) is obtained that correspond to seismic data (252). The surfaces are enumerated in the depth domain. An age is assigned to each surface in the depth domain (255). The age corresponds to an estimated time of deposition of the respective surface. An age mapping volume is generated (256). An extent of the age domain is chosen. A depth mapping volume is generated (260). Both the age mapping volume and the depth mapping volume are used to transform geophysical, geologic, or engineering data or interpretations (258, 263) between the depth domain and the age domain (268) and vice versa (269). The geophysical, geologic, or engineering data or interpretations transformed by at least one of the age or depth mapping volume are outputted.
摘要:
Method for transforming geologic data relating to a subsurface region between a geophysical depth domain and a geologic age domain. A set of topologically consistent surfaces (252a) is obtained that correspond to seismic data (252). The surfaces are enumerated in the depth domain. An age is assigned to each surface in the depth domain (255). The age corresponds to an estimated time of deposition of the respective surface. An age mapping volume is generated (256). An extent of the age domain is chosen. A depth mapping volume is generated (260). Both the age mapping volume and the depth mapping volume are used to transform geophysical, geologic, or engineering data or interpretations (258, 263) between the depth domain and the age domain (268) and vice versa (269). The geophysical, geologic, or engineering data or interpretations transformed by at least one of the age or depth mapping volume are outputted.
摘要:
A method of transforming geologic data relating to a subsurface region between a geophysical depth domain and a geologic age domain is disclosed. A set of topologically consistent surfaces is obtained that correspond to seismic data. The surfaces are enumerated in the depth domain. An age is assigned to each surface in the depth domain. The age corresponds to an estimated time of deposition of the respective surface. An age mapping volume is generated. An extent of the age domain is chosen. A depth mapping volume is generated. Both the age mapping volume and the depth mapping volume are used to transform geophysical, geologic, or engineering data or interpretations between the depth domain and the age domain and vice versa. The geophysical, geologic, or engineering data or interpretations transformed by at least one of the age mapping volume and the depth mapping volume are outputted.
摘要:
A computer-implemented method is provided for searching and analyzing a seismic data volume acquired in a seismic survey to determine potential for hydrocarbon accumulations in an associated subsurface region. Surfaces describing the seismic data volume are obtained. The surfaces are enumerated. At least one enumerated surface is selected. The at least one selected surface is augmented when the selected surface does not substantially cover an area associated with the seismic data volume. The augmenting is performed until all selected surfaces substantially cover the area. The at least one selected surface is displayed, with geologic or geophysical data associated therewith, for visual inspection or interpretation, or saving digital representations thereof to computer memory or data storage.
摘要:
A hydrocarbon exploration method for determining subsurface properties from geophysical survey data. Rock physics trends are identified and for each trend a rock physics model is determined that relates the subsurface property to geophysical properties (103). The uncertainty in the rock physics trends is also estimated (104). A geophysical forward model is selected (105), and its uncertainty is estimated (106). These quantities are used in an optimization process (107) resulting in an estimate of the subsurface property and its uncertainty.
摘要:
A hydrocarbon exploration method for determining subsurface properties from geophysical survey data. Rock physics trends are identified and for each trend a rock physics model is determined that relates the subsurface property to geophysical properties (103). The uncertainty in the rock physics trends is also estimated (104). A geophysical forward model is selected (105), and its uncertainty is estimated (106). These quantities are used in an optimization process (107) resulting in an estimate of the subsurface property and its uncertainty.
摘要:
Method for analysis of hydrocarbon potential of subterranean regions by generating surfaces or geobodies and analyzing them for hydrocarbon indications. Reflection-based surfaces may be automatically created in a topologically consistent manner where individual surfaces do not overlap themselves and sets of multiple surfaces are consistent with stratigraphic superposition principles. Initial surfaces are picked from the seismic data (41), then broken into smaller parts (“patches”) that are predominantly topologically consistent (42), whereupon neighboring patches are merged in a topologically consistent way (43) to form a set of surfaces that are extensive and consistent (“skeleton”). Surfaces or geobodies thus extracted may be automatically analyzed and rated (214) based on a selected measure (213) such as AVO classification or one or more other direct hydrocarbon indicators (“DHI”). Topological consistency for one or more surfaces may be defined as no self overlap plus local and global consistency among multiple surfaces (52).
摘要:
Method for identifying geologic features from geophysical or attribute data using windowed principal component (22), or independent component, or diffusion mapping (61) analysis. Subtle features are made identifiable in partial or residual data volumes. The residual data volumes (24) are created by (36) eliminating data not captured by the most prominent principal components (14). The partial data volumes are created by (35) projecting the data (21) on to selected principal components (22, 61). Geologic features may also be identified from pattern analysis (77) or anomaly volumes (62, 79) generated with a variable-scale data similarity matrix (73). The method is suitable for identifying physical features indicative of hydrocarbon potential.
摘要:
Method for identifying geologic features from geophysical or attribute data using windowed principal component (22), or independent component, or diffusion mapping (61) analysis. Subtle features are made identifiable in partial or residual data volumes. The residual data volumes (24) are created by (36) eliminating data not captured by the most prominent principal components (14). The partial data volumes are created by (35) projecting the data (21) on to selected principal components (22, 61). Geologic features may also be identified from pattern analysis (77) or anomaly volumes (62, 79) generated with a variable-scale data similarity matrix (73). The method is suitable for identifying physical features indicative of hydrocarbon potential.
摘要:
A method to extract fault surfaces from seismic data (1,3) is disclosed. The method comprises: (a) generating at least two fault sticks (5) from the same fault from at least two slices of the seismic data wherein each slice comprises at least one fault stick from the same fault, (b) constructing an initial three-dimensional fault surface (7) containing the fault sticks, and (c) reconstructing the initial fault surface (9) using a deformable surface model to fit discontinuity or coherency information in the seismic data in an iterative process. Techniques are disclosed for constructing the initial fault surface from interpreter-provided fault nodes, and for performing the deformable surface iteration by defining an energy function for the fault surface and then minimizing the surface energy.