Dual rate vehicle suspension system

    公开(公告)号:US10807434B2

    公开(公告)日:2020-10-20

    申请号:US16066161

    申请日:2017-01-06

    Abstract: A selectively switchable dual rate vehicle suspension system comprising a pushrod actuated inboard spring configuration, conventionally oriented between the unsprung mass and the sprung mass of one corner of the vehicle, comprising a torsion bar spring of a first predetermined rate, K1, and a coil spring of a second predetermined rate, K2, arranged in series so as to provide a total combined spring rate KT. A lockout actuator is arranged in parallel with the coil spring and configured so that in a first mode it allows the coil spring to move freely and in a second mode prevents motion of the coil spring such that when the lockout actuator is in a first, unlocked, mode the overall vehicle suspension spring rate is defined by the series equation 1/KT=1/K1+1/K2, and when the lockout actuator is in a second, locked, mode the overall vehicle suspension spring rate is substantially higher as defined by KT=K1, thus selectively providing both a low rate, optimal ride comfort setting and a high rate, optimal handling setting.

    DUAL RATE VEHICLE SUSPENSION SYSTEM
    2.
    发明申请

    公开(公告)号:US20190009632A1

    公开(公告)日:2019-01-10

    申请号:US16066161

    申请日:2017-01-06

    Abstract: A selectively switchable dual rate vehicle suspension system comprising a pushrod actuated inboard spring configuration, conventionally oriented between the unsprung mass and the sprung mass of one corner of the vehicle, comprising a torsion bar spring of a first predetermined rate, K1, and a coil spring of a second predetermined rate, K2, arranged in series so as to provide a total combined spring rate KT. A lockout actuator is arranged in parallel with the coil spring and configured so that in a first mode it allows the coil spring to move freely and in a second mode prevents motion of the coil spring such that when the lockout actuator is in a first, unlocked, mode the overall vehicle suspension spring rate is defined by the series equation 1/KT=1/K1+1/K2, and when the lockout actuator is in a second, locked, mode the overall vehicle suspension spring rate is substantially higher as defined by KT=K1, thus selectively providing both a low rate, optimal ride comfort setting and a high rate, optimal handling setting.

Patent Agency Ranking