Abstract:
A method for video multicast delivery for 4g wireless networks includes collecting client feedback and obtaining supportable modulation and coding scheme MCS for each client over a base station of wireless network, prioritizing video packets for said clients and setting a utility for each of the video packets; performing a radio resource allocation for determining a utility optimization for transmitted frames of the video packets; and assigning an MCS to each transmitted frame of the video packets, responsive to step performing a radio resource allocation
Abstract:
Disclosed are systems, methods and structures that provide improved spatial reuse of spectral resources in small-cell wireless networks including WiMAX, LTE, LTE-Advanced, etc. Advantageously, the systems and method disclosed while leveraging beamforming for spatial reuse across small cells also decouple it from per-frame scheduling at a small cell base station thereby allowing for beam selections to be computed with a granularity measured in seconds. In realizing these advantages, systems, methods and structures disclosed integrate beam selection with client association.
Abstract:
A method for video multicast delivery for 4g wireless networks includes collecting client feedback and obtaining supportable modulation and coding scheme MCS for each client over a base station of wireless network, prioritizing video packets for said clients and setting a utility for each of the video packets; performing a radio resource allocation for determining a utility optimization for transmitted frames of the video packets; and assigning an MCS to each transmitted frame of the video packets, responsive to step performing a radio resource allocation.