Abstract:
A system and method for analysis of complex systems which includes determining model parameters based on time series data, further including profiling a plurality of types of data properties to discover complex data properties and dependencies; classifying the data dependencies into predetermined categories for analysis; and generating a plurality of models based on the discovered properties and dependencies. The system and method may analyze, using a processor, the generated models based on a fitness score determined for each model to generate a status report for each model; integrate the status reports for each model to determine an anomaly score for the generated models; and generate an alarm when the anomaly score exceeds a predefined threshold.
Abstract:
A method for metric ranking in invariant networks includes, given an invariant network and a set of broken invariants, two ranking processes are used to determine and rank the anomaly scores of each monitoring metrics in large-scale systems. Operators can follow the rank to investigate the root-cause in problem investigation. In a first ranking process, given a node/metric, the method determines multiple scores by integrating information from immediate neighbors to decide the anomaly score for metric ranking. In a second ranking process, given a node/metric, an iteration process is used to recursively integrate the information from immediate neighbors at each round to determine its anomaly score for metric ranking.
Abstract:
Systems and method for modeling system dynamics, including extracting features representative of a temporal evolution of a dynamical system, further including deriving one or more vector trajectories by performing sliding window segmentation of one or more time series; applying a linear test to determine whether the one or more vector trajectories are linear or nonlinear; and performing linear or nonlinear subspace decomposition on the vector trajectory based on the linear test. The system and method may generate a system evolution model from the extracted features of the dynamical system and determine a fitness score of the system evolution model.
Abstract:
A computer implemented method for temporal ranking in invariant networks includes considering an invariant network and a set of broken invariants in the invariant network, assuming, for each time point inside a window W, that each metric with broken invariants is affected by a fault at that time point, computing an expected pattern for each invariant of a metric with assumed fault, said pattern indicative of time points at which an invariant will be broken given that its associated metric was affected by a fault at time t, comparing the expected pattern with the pattern observed over the time window W; and determining a temporal score based on a match from the prior comparing
Abstract:
A computer implemented method for temporal ranking in invariant networks includes considering an invariant network and a set of broken invariants in the invariant network, assuming, for each time point inside a window W, that each metric with broken invariants is affected by a fault at that time point, computing an expected pattern for each invariant of a metric with assumed fault, said pattern indicative of time points at which an invariant will be broken given that its associated metric was affected by a fault at time t, comparing the expected pattern with the pattern observed over the time window W; and determining a temporal score based on a match from the prior comparing.
Abstract:
A system and method for analysis of complex systems which includes determining model parameters based on time series data, further including profiling a plurality of types of data properties to discover complex data properties and dependencies; classifying the data dependencies into predetermined categories for analysis; and generating a plurality of models based on the discovered properties and dependencies. The system and method may analyze, using a processor, the generated models based on a fitness score determined for each model to generate a status report for each model; integrate the status reports for each model to determine an anomaly score for the generated models; and generate an alarm when the anomaly score exceeds a predefined threshold.
Abstract:
A method for metric ranking in invariant networks includes, given an invariant network and a set of broken invariants, two ranking processes are used to determine and rank the anomaly scores of each monitoring metrics in large-scale systems. Operators can follow the rank to investigate the root-cause in problem investigation. In a first ranking process, given a node/metric, the method determines multiple scores by integrating information from immediate neighbors to decide the anomaly score for metric ranking. In a second ranking process, given a node/metric, an iteration process is used to recursively integrate the information from immediate neighbors at each round to determine its anomaly score for metric ranking.