DEMAND CHARGE MINIMIZATION AND PV UTILIZATION MAXIMIZATION

    公开(公告)号:US20190131923A1

    公开(公告)日:2019-05-02

    申请号:US16173265

    申请日:2018-10-29

    Abstract: A computer-implemented method is provided for controlling a Battery Energy Storage System (BESS) having a battery set and connected to a Photovoltaic (PV) panel set. The method includes enforcing, by a processor device, a multi-objective Model Predictive Control (MPC) optimization on the BESS. The multi-objective MPC optimization includes a first objective of reducing a possibility of Demand Charge Threshold violations by minimal DCT increments which provide a higher demand charge savings, a second objective of improving a robustness of the BESS against energy forecast errors by increasing a State Of Charge (SOC) of the battery set, and a third objective of maximizing PV-utilization. The method further includes controlling, by the processor device, charging and discharging of the BESS in accordance with the multi-objective MPC optimization to meet the first, second, and third objectives.

    SYSTEM AND METHOD FOR MODEL PREDICTIVE ENERGY STORAGE SYSTEM CONTROL

    公开(公告)号:US20190056451A1

    公开(公告)日:2019-02-21

    申请号:US16103970

    申请日:2018-08-16

    Abstract: Systems and methods for controlling Battery Energy Storage Systems (BESSs), including determining historical minimum state of charge (SOC) for peak shaving of a previous day based on historical photovoltaic (PV)/load profiles, historical demand charge thresholds (DCT), and battery capacity of the BESSs. A minimum SOC for successful peak shaving of a next day is estimated by generating a weighted average based on the historical minimum SOC, and optimal charging/discharging profiles for predetermined intervals are generated based on estimated PV/load profiles for a next selected time period and grid feed-in limitations. Continuous optimal charging/discharging functions are provided for the one or more BESSs using a real-time controller configured for overriding the optimal charging/discharging profiles when at least one of a high excess PV generation, a peak shaving event, or a feed-in limit violation is detected.

Patent Agency Ranking