Abstract:
A howling removing apparatus according to the present disclosure is a howling removing apparatus to be connected to a microphone and a speaker. The howling removing apparatus includes: a nonlinear converter that nonlinearly converts a sound signal input to the speaker and outputs a nonlinear signal; a delay unit that delays the sound signal by a fixed time and outputs a delay signal; a norm calculator that calculates a norm from the delay signal; a filter coefficient generator that, based on the nonlinear signal, the delay signal and the norm, generates an adaptive filter that simulates a transfer characteristic of a space where the sound signal is reproduced from the speaker and is returned to the microphone; a cancel signal generator that convolves the delay signal and the adaptive filter with each other and generates a cancel signal; and a subtracter that subtracts the cancel signal from the sound signal. When an average sound pressure level of the sound signal exceeds a threshold value, the filter coefficient generator initializes the adaptive filter, thereby sensing oscillation of the adaptive filter even when a positional relationship between the microphone and the speaker is dynamically changed, and returning an output to normal.
Abstract:
A noise reduction device includes a plurality of noise microphones, a noise controller, and a control speaker. The noise controller generates a control sound signal for reducing, at a center of control in a control space, noise detected by the noise microphones. The number of noise microphones disposed closer than a distance d from the center of control is less than the number disposed farther than distance d, when distance d is expressed as d=d0+t×v−λ/2, where λ is a wavelength corresponding to a control frequency f in the noise microphones, d0 is the distance from the center of control to the control speaker, t is the control delay time in the control speaker, and v is sound velocity. The noise microphones that are disposed farther than the distance d from the center of control are approximately equally spaced apart.
Abstract:
An audio signal processing apparatus includes: an obtaining unit which obtains a stereo signal including an R signal and an L signal; a control unit which generates a processed R signal and a processed L signal by performing (i) a first process of convolving pairs of right- and left-ear head related transfer functions into the R signal so that a sound image of the R signal is localized at each of two or more different positions at a right side of a listener; and (ii) a second process of convolving pairs of right- and left-ear head related transfer functions into the L signal so that a sound image of the L signal is localized at each of two or more different positions at a left side of the listener; and an output unit which outputs the processed R signal and the processed L signal.
Abstract:
A noise reduction device includes a processor that converts a noise signal collected by a microphone disposed in a control space into a noise signal in a frequency domain, a storage that stores the converted noise signal in the frequency domain as a reference signal, and a signal generator that generates a noise reduction signal for reducing the noise signal collected by the microphone at a control position of the control space. The processor determines whether or not the noise signal is non-stationary noise based on a frequency characteristic of the converted noise signal in the frequency domain and a frequency characteristic of the reference signal. When it is determined that the noise signal is the non-stationary noise, the processor controls the signal generator so as to cancel generation of the noise reduction signal.
Abstract:
In a noise reduction device that generates and outputs a control sound signal for reducing noise, an internal loop control unit controls an internal loop in which a pre-output control sound signal that is acquired from a control sound output unit before output to a speaker is input to a sound receiver. A measurement unit measures an input level of a microphone sound signal and an input level of the pre-output control sound signal that has been input to the sound receiver in the internal loop. A fault detector uses the input level of the microphone sound signal and the input level of the pre-output control sound signal measured by the measurement unit to detect a fault in any one of the microphone, the sound receiver, the speaker, and the control sound output unit. A transmitter sends a result of fault detection performed by the fault detector to a management device.
Abstract:
The voice control device includes a sound source signal input unit, a frequency determination unit, a band controller, a sound image controller, and a voice output unit. The sound source signal input unit inputs a sound source signal of content from a sound source. The frequency determination unit determines a cutoff frequency. The band controller acquires a high frequency signal in a frequency band equal to or higher than the cutoff frequency and a low frequency signal in a frequency band equal to or lower than the cutoff frequency, from the sound source signal of the content. The sound image controller generates a plurality of sound image control signals for controlling sound images of the plurality of speakers, by controlling at least one of a phase and a sound pressure level of the high frequency signal. The voice output unit outputs the low frequency signal to a first speaker, and outputs the plurality of sound image control signals to a second speaker composed of a plurality of speakers.
Abstract:
A noise reduction device includes a processor that converts a noise signal collected by a microphone disposed in a control space into a noise signal in a frequency domain, a storage that stores the converted noise signal in the frequency domain as a reference signal, and a signal generator that generates a noise reduction signal for reducing the noise signal collected by the microphone at a control position of the control space. The processor determines whether or not the noise signal is non-stationary noise based on a frequency characteristic of the converted noise signal in the frequency domain and a frequency characteristic of the reference signal. When it is determined that the noise signal is the non-stationary noise, the processor controls the signal generator so as to cancel generation of the noise reduction signal.
Abstract:
In the noise reduction device, the sound receiver receives a noise signal acquired from the microphone. The sound source input unit receives an input of a sound source signal from a sound source. The sound adjuster changes the intensity of the sound source signal relative to the intensity of the noise signal. The control sound generator generates a control sound signal that reduces the noise signal. The control unit controls the change of the intensity of the sound source signal and the generation of the control sound signal. The sound output outputs the control sound signal to the speaker. The sound output outputs to the speaker the sound source signal at the intensity changed by the sound adjuster.