Abstract:
A digital audio conferencing system has a fixed base station that is in communication with a far end (R.E.) system over a communication network. The base station is associated with a wireless loudspeaker and one or more wireless microphones. The base station operates to receive F.E. audio signals to be played by the wireless loudspeaker, and it operates to remove acoustic echo picked up by the wireless microphones. A first clock controlling F.E. audio signal sampling at the base station, and a second clock controlling audio signal sampling and at a wireless microphone are synchronized to one master, reference clock that controls the operation of the base station. Acoustic echo included in an audio signal picked up by a wireless microphone is removed by AEC functionality running in the base station.
Abstract:
A digital audio conferencing system has a fixed base station that is in communication with a far end (R.E.) system over a communication network. The base station is associated with a wireless loudspeaker and one or more wireless microphones. The base station operates to receive F.E. audio signals to be played by the wireless loudspeaker, and it operates to remove acoustic echo picked up by the wireless microphones. A first clock controlling F.E. audio signal sampling at the base station, and a second clock controlling audio signal sampling and at a wireless microphone are synchronized to one master, reference clock that controls the operation of the base station. Acoustic echo included in an audio signal picked up by a wireless microphone is removed by AEC functionality running in the base station.
Abstract:
A keyboard/video/mouse (KVM) switching protocol is disclosed in which KVM information is applied to a network of workstations. At least one data converter communicates on the workstation network and retrieves KVM information from the workstation network that is addressed to a server assigned to the converter. The converter places the KVM information in a format suitable to the assigned server and applies the converted KVM information to the appropriate standard device ports of the server. The system provides motherboard access to the servers that is characteristics of KVM switches but provides essentially unlimited scalability not known in traditional KVM switches.
Abstract:
A two-stage pixel skew compensation circuit for use with digital display monitors. The first stage of the compensation circuit aligns the edges of the pixels received on the color component signal lines of an analog video signal. The second stage of the de-skew compensation circuit realigns the pixels themselves so that no skew exists between the digitized video color components. The digitized video signals drive a digital video monitor.
Abstract:
A keyboard/video/mouse (KVM) switching protocol is disclosed in which KVM information is applied to a network of workstations. At least one data converter communicates on the workstation network and retrieves KVM information from the workstation network that is addressed to a server assigned to the converter. The converter places the KVM information in a format suitable to the assigned server and applies the converted KVM information to the appropriate standard device ports of the server. The system provides motherboard access to the servers that is characteristics of KVM switches but provides essentially unlimited scalability not known in traditional KVM switches.
Abstract:
A two-stage pixel skew compensation circuit for use with digital display monitors. The first stage of the compensation circuit aligns the edges of the pixels received on the color component signal lines of an analog video signal. The second stage of the de-skew compensation circuit realigns the pixels themselves so that no skew exists between the digitized video color components. The digitized video signals drive a digital video monitor.
Abstract:
A keyboard/video/mouse (KVM) switching protocol is disclosed in which KVM information is applied to a network of workstations. At least one data converter communicates on the workstation network and retrieves KVM information from the workstation network that is addressed to a server assigned to the converter. The converter places the KVM information in a format suitable to the assigned server and applies the converted KVM information to the appropriate standard device ports of the server. The system provides motherboard access to the servers that is characteristics of KVM switches but provides essentially unlimited scalability not known in traditional KVM switches.