Abstract:
Various aspects of the disclosure described herein provide for optimizing rate control during a selection of a communications profile from a set of communications profiles by taking into account effective frame aggregation size as a function of packet error rate (PER). An expected throughput may also be determined for each communications profile and updated after each transmission so that a communications profile having the highest expected throughput may be chosen for a particular frame transmission.
Abstract:
Various aspects of the disclosure described herein provide for optimizing rate control during a selection of a communications profile from a set of communications profiles by taking into account effective frame aggregation size as a function of packet error rate (PER). An expected throughput may also be determined for each communications profile and updated after each transmission so that a communications profile having the highest expected throughput may be chosen for a particular frame transmission.
Abstract:
MAC layer frame aggregation and block acknowledgement are used in some WLAN technologies to improve efficiency of a communications channel by reducing PHY layer overhead. A frame aggregation window size defines how many MAC protocol data units (MPDUs) are included in an aggregated MPDU (AMPDU) frame. The frame aggregation window for a subsequent AMPDU frame is typically dependent upon the characteristics of the block acknowledgement—such as the number of non-acknowledged (NAK) MPDUs or the position of a hole in the previous AMPDU frame. A small frame aggregation window size may impact throughput especially at higher transmission rates. In this disclosure a transmission rate may be determined based, at least in part, on a projected frame aggregation window size resulting from a block acknowledgement. The frame aggregation feedback (e.g. block acknowledgement) may be used by a rate control module to determine a transmission rate that optimizes frame aggregation efficiency.