-
公开(公告)号:US20160364083A1
公开(公告)日:2016-12-15
申请号:US14828855
申请日:2015-08-18
Applicant: Quanta Computer Inc.
Inventor: Yun-Cheng LIU , Chien-Hung LIN , Chung-Sheng WU
IPC: G06F3/042 , G06F3/0354
CPC classification number: G06F3/0421 , G06F3/03545
Abstract: An optical touch system includes a screen, an image-erasing device, an image-sensing module, a processing unit, and an image processor. The image-erasing device includes a body and reflection portions on the body. The image-erasing device is detachably contacted with the screen. The image-sensing module includes a light source emitting a light beam to the reflection portions to respectively generate a reflected light beam, and an image sensor detecting the reflected light beams. The processing unit obtains positions on the screen respectively corresponding to the reflection portions according to the reflected light beams, and defines position information of an erasing region according to the positions on the screen. The image processor outputs a display image to be displayed on the screen, and erases data of the display image corresponding to the erasing region according to the position information.
Abstract translation: 光学触摸系统包括屏幕,图像擦除装置,图像感测模块,处理单元和图像处理器。 图像擦除装置包括主体和身体上的反射部分。 图像擦除装置与屏幕可拆卸地接触。 图像感测模块包括将光束发射到反射部分以分别产生反射光束的光源和检测反射光束的图像传感器。 处理单元根据反射的光束获得与反射部分对应的屏幕上的位置,并且根据屏幕上的位置来定义擦除区域的位置信息。 图像处理器输出要显示在屏幕上的显示图像,并且根据位置信息擦除对应于擦除区域的显示图像的数据。
-
公开(公告)号:US20210074011A1
公开(公告)日:2021-03-11
申请号:US16707234
申请日:2019-12-09
Applicant: Quanta Computer Inc.
Inventor: Kai-Ju CHENG , Kuan-Chung CHEN , Yu-Cheng CHIEN , Chung-Sheng WU , Hao-Ping LEE , Chin-Yuan TING , Yu-Hsun CHEN , Shao-Ang CHEN , Jia-Chyi WANG , Chih-Wei SUNG
Abstract: A tooth-position recognition system includes an electronic device and a calculation device. The electronic device includes a first camera. The first camera is configured to capture a plurality of tooth images. The calculation device includes a second camera and a processor. The second camera is configured to capture a user image. The processor is configured to receive the tooth images, compare the corresponding position of each pixel in each tooth image to generate a depth map, and input the tooth images, the depth map, and a plurality of first tooth-region identifiers into a tooth deep-learning model. The tooth deep-learning model outputs a plurality of deep-learning probability values that are the same in number as the first tooth-region identifiers. The processor inputs the user image and the plurality of second tooth-region identifiers into a user-image deep-learning model.
-