Abstract:
A hydraulic brake system with anti-lock brake control has a variable-speed electromotor for driving the return pump (9) to drain the low-pressure accumulators (8), which accommodates pressure fluid discharged from the wheel brakes (5) during a slip-controlled braking. An electronic controller and solenoid valves (4, 7) modulate the brake pressure in the wheel brakes (5) of the slip-controlled wheels individually for each wheel in dependence on wheel rotation behavior. The electronic controller includes a module to change the speed of the electromotor, wherein the nominal speed of the electromotor is set or controlled in dependence on the filling level in the at least one of the low-pressure accumulators (8), and possibly the prevailing pressure in the brake system. Thus, an unadjusted motor speed, which can lead to overspeeding of the motor when no fluid is present in the low-pressure accumulator, is eliminated.
Abstract:
To monitor chassis functions and chassis components of a motor vehicle and/or to detect wear, wear trends, component defects or declining functions, information provided by control systems mounted in the vehicle and/or obtained by way of additional sensors is evaluated. Evaluations relating to vehicle dynamics are carried out on the basis of said information, with reproducible vehicle or driving conditions, and taken into account in order to statistically evaluate specific features, which directly or indirectly reflect chassis functions and/or the condition of chassis components, and to subsequently identify defects or malfunctions.
Abstract:
A method of determining an initial pressure which prevails between a master brake cylinder and an inlet valve of a wheel brake cylinder of a motor vehicle brake system. It determines the initial pressure taking into consideration the variation of a follow-up voltage of a clock-operated motor of a pump, which is used for the return delivery of brake fluid from a low-pressure accumulator into the master brake cylinder. Several characteristic quantities of the voltage variation are measured and in each case taken into account to determine an initial pressure value, and the quality and/or reliability of the measured characteristic quantities is evaluated. The characteristic quantities and/or the initial pressure values determined therefrom are filtered and/or conditioned in the event of lack in quality and/or reliability of the measured characteristic quanitites. The initial pressure values determined from the various characteristic quantities are averaged, with only pressure values of similar size being taken into consideration and the initial pressure values are temporally averaged in order to dampen fluctuations.
Abstract:
Disclosed is an electronic control method for a slip-controlled motor vehicle brake system (1), featuring a distributor device (5) with an electronic unit (7,ECU) and hydraulic unit (6,HCU) having a housing body for hydraulic components, such as electrohydraulic inlet and outlet valves (9,10) for wheel brakes (8) organized in brake circuits, and with a motor-pump-aggregate with an electric motor (15) for redirecting hydraulic fluid from wheel brakes (8) in the direction of a pressure sensor (3). Antilock control is facilitated through the build-up, maintenance and release of pressure in the electrohydraulic inlet and outlet valves (9,10), while the admission pressure input by the driver is analyzed by means of the pressure sensor (3) in the brake system.