PALM-SUPPORTED FINGER REHABILITATION TRAINING DEVICE AND APPLICATION METHOD THEREOF

    公开(公告)号:US20210401657A1

    公开(公告)日:2021-12-30

    申请号:US17293448

    申请日:2019-03-21

    Abstract: A palm-supported finger rehabilitation training device comprises a mounting base, a finger rehabilitation training mechanism mounted on the mounting base, and a driving mechanism for driving the finger rehabilitation training mechanism; wherein the finger rehabilitation training mechanism comprises four independent and structurally identical combined transmission devices for finger training corresponding to a forefinger, a middle finger, a ring finger and a little finger of a human hand, respectively, and the mounting base is provided with a supporting surface capable of supporting a human palm; wherein each combined transmission device for finger training comprises an MP movable chute, a PIP fingerstall, a DIP fingerstall and a connecting rod transmission mechanism; a force sensor is provided to acquire force feedback information to determine and control force stability, and a space sensor is provided to acquire space angle information to control space positions of fingers in real time.

    AUTOMATED CALIBRATION SYSTEM AND CALIBRATION METHOD FOR FLEXIBLE ROBOT ACTUATOR

    公开(公告)号:US20230211504A1

    公开(公告)日:2023-07-06

    申请号:US17774317

    申请日:2022-01-06

    CPC classification number: B25J9/1692

    Abstract: The present disclosure discloses an automated calibration system and calibration method for a flexible robot actuator. The calibration system includes a support frame. A visual positioning system, a pressure measuring system and a pneumatic pressure control system are respectively installed on the support frame. The visual positioning system is configured to measure a relative displacement and an angle between two ends of the flexible actuator. The pneumatic pressure control system is configured to charge air into an actuating end of the flexible actuator and measure an input pneumatic pressure of the flexible actuator. The pressure measuring system includes a pressure gauge installed on the support frame through a vertical axis motor system, and the flexible actuator to be calibrated installed on the support frame through a horizontal axis motor system and a rotating motor system. The rotating motor system is installed on the support frame through the horizontal axis motor system, the actuating end of the flexible actuator is fixed on the rotating motor system, and a free end of the flexible actuator is in contact with a measuring end of the pressure gauge to carry out pressure measurement. The calibration system is high in accuracy and simple to use.

    METHOD FOR MANUFACTURING AND CONTROLLING REHABILITATION GLOVE BASED ON BIDIRECTIONAL DRIVER OF HONEYCOMB IMITATING STRUCTURE

    公开(公告)号:US20230139608A1

    公开(公告)日:2023-05-04

    申请号:US17792316

    申请日:2022-01-06

    Abstract: A rehabilitation glove based on a bidirectional driver of a honeycomb imitating structure, including five bidirectional drivers and a cotton glove. The drivers are fixed to a back of the glove through hook and loop fasteners. Each driver includes a hollow buckling air bag in a continuous bent state, a middle guide layer in a continuous bent state and a hollow stretching air bag. The buckling air bag and the middle guide layer are symmetrically arranged, and the stretching air bag in a straightened state is arranged below the middle guide layer. A novel bidirectional driver of a honeycomb imitating structure is provided, which may provide a patient with rehabilitation training in two degrees of freedom: buckling and stretching. A control algorithm of the bidirectional driver is further provided to perform force control output for the driver, which may better help the patient recover hand functions.

    EXOSKELETON FINGER REHABILITATION TRAINING DEVICE AND USAGE METHOD THEREOF

    公开(公告)号:US20220133578A1

    公开(公告)日:2022-05-05

    申请号:US17311325

    申请日:2020-06-28

    Abstract: A exoskeleton finger rehabilitation training device comprises an exoskeleton finger rehabilitation training mechanism comprising a supporting base, a finger sleeve actuating mechanism, and a finger joint sleeve connected to a power output end of the finger sleeve actuating mechanism, wherein the finger joint sleeve can be sheathed at the periphery of a finger joint to be rehabilitated, and the finger joint sleeve can be driven by the power actuation of the finger sleeve actuating mechanism to drive the finger joint to be rehabilitated in order to passively bend or stretch; the supporting base comprises a profiled shell, with an inner surface of the profiled shell being configured based on the profile of the complete back of a palm or part of the back of the palm, and with the back of the profiled shell being provided with a power fixed base.

Patent Agency Ranking