Abstract:
A diagnostic device includes a photodiode formed by a body of semiconductor material having a first surface, an integrated optical structure on the first surface and having a second surface, and at least one detection region on the second surface. The at least one detection region includes at least one receptor that binds to a corresponding target molecule that can be mated with a corresponding marker, which, when excited by radiation having a first wavelength, emits radiation having a second wavelength that can be detected by the photodiode. The integrated optical structure includes at least a first layer of a first material having a first refractive index. The first layer has a thickness substantially equal to an integer and odd multiple of one fourth of the first wavelength divided by the first refractive index.
Abstract:
An embodiment of array of Geiger-mode avalanche photodiodes, wherein each photodiode is formed by a body of semiconductor material, having a first conductivity type and housing an anode region, of a second conductivity type, facing a top surface of the body, a cathode-contact region, having the first conductivity type and a higher doping level than the body, facing a bottom surface of the body, an insulation region extending through the body and insulating an active area from the rest of the body, the active area housing the anode region and the cathode-contact region. The insulation region is formed by a first mirror region of polycrystalline silicon, a second mirror region of metal material, and a channel-stopper region of dielectric material, surrounding the first and second mirror regions.