Abstract:
The present disclosure is directed to systems and methods to perform absolute rotation estimation including outlier detection via low-rank and sparse matrix decomposition. One example method includes obtaining a relative rotation estimates matrix that includes a plurality of relative rotation estimates. The method includes determining values for a low-rank matrix that result in a desirable value of a cost function that is based on a low-rank and sparse matrix decomposition of the relative rotation estimates matrix. The cost function includes the low-rank matrix and a sparse matrix that is nonzero in correspondence of one or more outliers of the plurality of relative rotation estimates. The method includes determining an absolute rotations matrix that includes a plurality of absolute rotations based at least in part on the values of the low-rank matrix that result in the desirable value of the cost function.
Abstract:
The present disclosure is directed to systems and methods to perform absolute rotation estimation including outlier detection via low-rank and sparse matrix decomposition. One example method includes obtaining a relative rotation estimates matrix that includes a plurality of relative rotation estimates. The method includes determining values for a low-rank matrix that result in a desirable value of a cost function that is based on a low-rank and sparse matrix decomposition of the relative rotation estimates matrix. The cost function includes the low-rank matrix and a sparse matrix that is nonzero in correspondence of one or more outliers of the plurality of relative rotation estimates. The method includes determining an absolute rotations matrix that includes a plurality of absolute rotations based at least in part on the values of the low-rank matrix that result in the desirable value of the cost function.