Abstract:
Disclosed is an organic light emitting diode display including an organic light emitting display panel configured to display an image, and a lower passivation film attached to a bottom of the organic light emitting diode display panel. The lower passivation film includes a support film that is in contact with the organic light emitting diode display panel, and a stress adjustment layer formed beneath the support film and configured to reduce a bending stress to be induced in the organic light emitting display panel when the organic light emitting display panel and the lower passivation film are bent.
Abstract:
Disclosed is an organic light emitting diode display including an organic light emitting display panel configured to display an image, and a lower passivation film attached to a bottom of the organic light emitting diode display panel. The lower passivation film includes a support film that is in contact with the organic light emitting diode display panel, and a stress adjustment layer formed beneath the support film and configured to reduce a bending stress to be induced in the organic light emitting display panel when the organic light emitting display panel and the lower passivation film are bent.
Abstract:
A display device includes a touch panel (TP), a transparent adhesive member (TAM) on a surface of the TP, a touch printed circuit board (TPCB), and a display panel (DP) on a surface of the TAM. The TP includes a sensing portion and a pad side portion (PSP) on a side of the sensing portion. The TPCB includes a contact portion (CP) attached to a surface of the PSP. The DP includes a substrate, an optical film (OF) on a surface of the substrate, and a bending protection layer (BPL) on a side of the OF on the surface of the substrate. The surface of the PSP includes a connection area attached to the CP and a non-connection area not attached to the CP. The OF is spaced from the BPL with a gap disposed therebetween. The TAM overlaps, in a thickness direction, with the TPCB and the gap.
Abstract:
Disclosed is an organic light emitting diode display including an organic light emitting display panel configured to display an image, and a lower passivation film attached to a bottom of the organic light emitting diode display panel. The lower passivation film includes a support film that is in contact with the organic light emitting diode display panel, and a stress adjustment layer formed beneath the support film and configured to reduce a bending stress to be induced in the organic light emitting display panel when the organic light emitting display panel and the lower passivation film are bent.
Abstract:
Provided is a manufacturing method of a flexible display device, including locally deforming a transparent window; attaching a contractive film to a flexible display panel including a display area implementing an image; bending the flexible display panel by applying energy to the contractive film; and attaching the flexible display panel to the transparent window.
Abstract:
Disclosed is an organic light emitting diode display including an organic light emitting display panel configured to display an image, and a lower passivation film attached to a bottom of the organic light emitting diode display panel. The lower passivation film includes a support film that is in contact with the organic light emitting diode display panel, and a stress adjustment layer formed beneath the support film and configured to reduce a bending stress to be induced in the organic light emitting display panel when the organic light emitting display panel and the lower passivation film are bent.