Abstract:
An organic light emitting diode display including: a substrate; an organic light emitting diode on the substrate; a capping layer on the organic light emitting diode and including a high refractive layer including an inorganic material having a refractive index that is equal to or greater than about 1.7 and equal to or less than about 6.0; and a thin film encapsulation layer covering the capping layer and the organic light emitting diode, the inorganic material including at least one selected from the group consisting of CuI, thallium iodide (TlI), BaS, Cu2O, CuO, BiI, WO3, TiO2, AgI, CdI2, HgI2, SnI2, PbI2, BiI3, ZnI2, MoO3, Ag2O, CdO, CoO, Pr2O3, SnS, PbS, CdS, CaS, ZnS, ZnTe, PbTe, CdTe, SnSe, PbSe, CdSe, AlAs, GaAs, InAs, GaP, InP, AlP, AlSb, GaSb, and InSb.
Abstract:
An organic light emitting element is provided. An organic light emitting element according to an exemplary embodiment includes: a first electrode and a second electrode that face each other; an emission layer provided between the first electrode and the second electrode; and an electron injection layer provided between the second electrode and the emission layer, wherein the electron injection layer includes Ca, and the second electrode includes a first material including at least one of Ag, Al, and Mg and a second material including at least one of Yb, Ca, Sm, Eu, Tb, Sr, Ba, La, and Ce.
Abstract:
An organic light emitting diode and an organic light emitting display device, the organic light emitting diode including a first electrode and a second electrode facing each other; an emission layer between the first electrode and the second electrode; and a hole transport layer between the first electrode and the emission layer, wherein the hole transport layer includes an organic material and a dipole material, the dipole material including a first component and a second component, the first component having a polarity different from that of the second component and the first component and the second component being combined with each other.
Abstract:
An organic light emitting diode, including a first electrode; a second electrode facing the first electrode, the second electrode including magnesium; an emission layer between the first electrode and the second electrode; and an electron injection layer between the second electrode and the emission layer, the electron injection layer including a dipole material including a first component and a second component having different polarities, the dipole material including halide, and a content of the magnesium included in the second electrode being in a range of from 10 to 40 volume %.
Abstract:
An organic light emitting diode, including a first electrode; a second electrode facing the first electrode, the second electrode including magnesium; an emission layer between the first electrode and the second electrode; and an electron injection layer between the second electrode and the emission layer, the electron injection layer including a dipole material including a first component and a second component having different polarities, the dipole material including halide, and a content of the magnesium included in the second electrode being in a range of from 10 to 40 volume %.
Abstract:
An organic light emitting diode display includes: a substrate; an organic light emitting element on the substrate; and a capping layer on the organic light emitting element and including a high refraction layer formed of an inorganic material having a refractive index which is equal to or greater than about 1.7 and equal to or less than about 6.0, wherein the inorganic material includes at least one selected from CuI, thallium iodide (TlI), AgI, CdI2, HgI2, SnI2, PbI2, BiIa, ZnI2, MnI2, FeI2, CoI2, NiI2, aluminium iodide (AlI3), thorium(IV) iodide (ThI4), uranium triiodide (UI3), MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, SnS, PbS, CdS, CaS, ZnS, ZnTe, PbTe, CdTe, SnSe, PbSe, CdSe, CuO, Cu2O, WO3, MoO3, SnO2, Nb2O5, Ag2O, CdO, CoO, Pr2O3, Bi2O3, Fe2O3, AlAs, GaAs, InAs, GaP, InP, AlP, AlSb, GaSb, and InSb.
Abstract:
An organic light emitting diode, including a first electrode; a second electrode facing the first electrode, the second electrode including magnesium; an emission layer between the first electrode and the second electrode; and an electron injection layer between the second electrode and the emission layer, the electron injection layer including a dipole material including a first component and a second component having different polarities, the dipole material including halide, and a content of the magnesium included in the second electrode being in a range of from 10 to 40 volume %.
Abstract:
An organic light emitting diode according to an example embodiment of the present disclosure includes: a first electrode; a second electrode facing the first electrode; an emission layer between the first electrode and the second electrode; and an electron injection layer between the second electrode and the emission layer. The electron injection layer includes a first halogen dipole material based on a transition or post-transition metal I, and a second halogen dipole material based on a metal having a work function of 4.0 eV or less.
Abstract:
An organic light emitting diode, including a first electrode and a second electrode facing each other; an emission layer between the first electrode and the second electrode; and an electron injection layer between the second electrode and the emission layer, the electron injection layer including a metal having a work function of 4.0 eV or less and a dipole material including a first component and a second component having different polarities.
Abstract:
An organic light emitting diode, including a first electrode and a second electrode facing each other; an emission layer between the first electrode and the second electrode; and a hole injection layer between the first electrode and the emission layer, the hole injection layer including a dipole material including a first component and a second component that have different polarities.