Abstract:
A voltage drop compensator for a display device and the display device including the same are disclosed. In one aspect, the voltage drop compensator includes a region divider, an expected current calculator, a conversion matrix generator, a representative voltage calculator, and a compensator. The region divider is configured to divide the display panel into a plurality of regions, and the display panel includes a plurality of power lines and a plurality of pixels configured to receive a power voltage via the power lines. The expected current calculator is configured to calculate an expected current to flow in each of the regions based on input data provided to each of the regions. The conversion matrix generator configured to generate a conversion matrix based on a line resistance of each of the power lines and convert the expected current to a representative voltage provided to the regions based on the conversion matrix.
Abstract:
A voltage drop compensator for a display device and the display device including the same are disclosed. In one aspect, the voltage drop compensator includes a region divider, an expected current calculator, a conversion matrix generator, a representative voltage calculator, and a compensator. The region divider is configured to divide the display panel into a plurality of regions, and the display panel includes a plurality of power lines and a plurality of pixels configured to receive a power voltage via the power lines. The expected current calculator is configured to calculate an expected current to flow in each of the regions based on input data provided to each of the regions. The conversion matrix generator configured to generate a conversion matrix based on a line resistance of each of the power lines and convert the expected current to a representative voltage provided to the regions based on the conversion matrix.