Abstract:
A method of controlling an electronic device includes displaying a three-dimensional (3D) virtual space comprising at least one 3D object, receiving a correspondence command to make a two-dimensional (2D) icon for executing an application correspond to a first object among the at least one 3D object; and assigning an attribute of the 2D icon to the first object.
Abstract:
Ultrasonic imaging method includes sequentially emitting by each transducer group of respective regions, into which transducers are divided, focused ultrasonic pulses to a focal point of an object; sequentially acquiring, by each transducer group, ultrasonic echo signals from the focal point based on the emitted ultrasonic pulses; calculating a normal vector of a surface of the object using emission directions of the focused ultrasonic pulses and intensities of the ultrasonic echo signals in correspondence to the focused ultrasonic pulses emitted by three of the transducer groups; calculating an attenuation rate of the ultrasonic echo signals using the normal vector and the emission directions of the focused ultrasonic pulses emitted by the three of the transducer groups, and correcting the ultrasonic echo signals based on the attenuation rate; beamforming the ultrasonic echo signals, an attenuation of which has been corrected, into ultrasonic image signals to be output as an ultrasonic image.
Abstract:
At least some example embodiments disclose a method and device for displaying a background image that may change an arrangement of an object based on image information associated with the background image and change a visual effect with respect to an adjacent region of the object.
Abstract:
Provided is a content visualizing method and apparatus. The content visualizing apparatus generates an object disposition space based on a road surface and an obstacle and determines a display position at which a graphic representation corresponding to route guidance content is visualized in the object disposition space.
Abstract:
An ultrasonic imaging method includes emitting ultrasonic pulses in different directions and acquiring ultrasonic echo signals from an object, calculating an attenuation rate of the ultrasonic echo signals, correcting the acquired ultrasonic echo signals based on the attenuation rate, and outputting the corrected ultrasonic echo signals as an ultrasonic image.
Abstract:
An image processing apparatus and method using a depth image are provided. The image processing apparatus may include a region determination unit to determine a foreground region and a background region in a color image using a depth image, and a color compensation unit to compensate a color with respect to the foreground region and the background region.