Abstract:
The present disclosure relates to systems and methods for calculating noise distributions in an electric power system. In one embodiment, a system to calculate a noise distribution in an electric power system may comprise a measurement subsystem to obtain a plurality of raw measurements of a parameter in the electric power system. A noise distribution determination subsystem may be configured to generate a plurality of scaled raw measurements from the plurality of raw measurements, generate a power spectrum density from the plurality of scaled raw measurements, generate a cumulative distribution from the power spectrum density, and determine a noise distribution from the power spectrum density. A protective action subsystem may monitor the parameter in the electric power system to identify a signal of interest by utilizing, at least in part, the noise distribution and generating a control action in response to the signal.
Abstract:
Electrical power machines are monitored according to the disclosure herein using time stamped mechanical conditions and electrical conditions. The mechanical conditions may include rotational position, calculated and time stamped rotational frequency, valve position, temperature, or vibration. The time stamped electrical conditions may include electrical power system frequency, electrical power machine field data, electrical power machine terminal information such as voltage and current, and the like. Electrical and mechanical time-stamped electrical power machine data from different machines that may be local or remote from each other may be compared for monitoring the machines.
Abstract:
The present disclosure relates to systems and methods for calculating noise distributions in an electric power system. In one embodiment, a system to calculate a noise distribution in an electric power system may comprise a measurement subsystem to obtain a plurality of raw measurements of a parameter in the electric power system. A noise distribution determination subsystem may be configured to generate a plurality of scaled raw measurements from the plurality of raw measurements, generate a power spectrum density from the plurality of scaled raw measurements, generate a cumulative distribution from the power spectrum density, and determine a noise distribution from the power spectrum density. A protective action subsystem may monitor the parameter in the electric power system to identify a signal of interest by utilizing, at least in part, the noise distribution and generating a control action in response to the signal.
Abstract:
Electrical power machines are monitored and a loss-of-field event is determined thereof using time stamped mechanical conditions and electrical conditions. The mechanical conditions may include rotational position, calculated and time stamped rotational frequency, valve position, temperature, or vibration. The time stamped electrical conditions may include electrical power system frequency, electrical power machine field data, electrical power machine terminal information such as voltage and current, and the like. Electrical and mechanical time-stamped electrical power machine data from different machines that may be local or remote from each other may be compared for monitoring the machines.
Abstract:
The present disclosure pertains to systems and methods for using time synchronized measurements of a generator output and an electrical bus, together with generator control algorithms to synchronize the frequency, voltage, and phase of a generator, or group of generators, prior to electrically connecting the generator to the electrical bus. More particularly, but not exclusively, the present disclosure pertains to systems that may be operated in an islanded configuration and in which one or more generators may be selectively synchronized based on a common time reference. The common time reference may allow the generators to be synchronized by autonomously driving one or more generators to a specified phase angle and frequency.
Abstract:
The present disclosure pertains to systems and methods for using time synchronized measurements of a generator output and an electrical bus, together with generator control algorithms to synchronize the frequency, voltage, and phase of a generator, or group of generators, prior to electrically connecting the generator to the electrical bus. More particularly, but not exclusively, the present disclosure pertains to systems that may be operated in an islanded configuration and in which one or more generators may be selectively synchronized based on a common time reference. The common time reference may allow the generators to be synchronized by autonomously driving one or more generators to a specified phase angle and frequency.