Abstract:
A driver circuit for dot inversion of liquid crystals includes a positive source supplying a first positive signal and a second positive signal; a negative source supplying a first negative signal and a second negative signal; a first selector unit connected with the sources to receive the first positive signal and the first negative signal; a second selector unit connected with the sources to receive the second positive signal and the second negative signal; a first source connected with the selection unit to alternatively output a first positive voltage and a first negative voltage; a second source connected with the selection unit to alternatively output a second positive voltage and a second negative voltage. When the first source outputs the first positive voltage, the second source outputs the second negative voltage. When the first source outputs the first negative voltage, the second source outputs the second positive voltage.
Abstract:
The present invention relates to an oscillating device, which comprises a driving module and an oscillating module. The driving module is used for producing a first driving voltage and a second driving voltage. The oscillating module comprises a first symmetric load circuit, a second symmetric load circuit, and a bias circuit. The first symmetric load circuit and the second symmetric load circuit produce a bias according to the first driving voltage. The bias circuit produces a bias current according to the second driving voltage. The oscillating module produces an oscillating signal according to the first driving voltage and the bias current, where the bias current is proportional to the bias. Thereby, by making the driving signal produced by driving module proportional to the bias of the oscillating module, simple compensation for temperature and process can be performed. Thereby, the frequency can be tuned using a few calibration bits.
Abstract:
A display panel driving method includes scanning a plurality of first gate lines of a plurality of gate lines according to a first predetermined order during a first time period of a frame period, and scanning a plurality of second gate lines of the gate lines according to a second predetermined order during a second time period of the frame period. Voltage polarity of a data signal located in any of a plurality of data lines remains unchanged during the first time period. Voltage polarity of the data signal located in any of the data lines remains unchanged during the second time period.
Abstract:
The present invention relates to a transmission interface device capable of calibrating the transmission frequency automatically, which comprises a clock generating unit, a data transmission unit, and a control unit. The clock generating unit is used for generating an operating clock, which determines a transmission frequency. The data transmission unit is used for connecting to a host and transmitting a plurality of data to the host or receiving the plurality of data from the host according to the operating clock. When the host or the data transmission unit detects transmission errors in the plurality of data, the host or the data transmission unit generates an error handling. The control unit generates an adjusting signal according to the error handling and transmits the adjusting signal to the clock generating unit for adjusting the transmission frequency of the operating clock.
Abstract:
The present invention relates to a touch detecting circuit, which comprises a touch driving circuit and a touch sensing circuit. The touch driving circuit generates a touch driving signal and provides it to at least one common electrode of a panel. The touch sensing circuit receives a plurality of sensing signals via a plurality of source lines or/and a plurality of gate lines of the panel for detecting the touch location. The sensing signals are generated corresponding to the touch driving signal. In addition, the touch driving circuit may provide the touch driving signal to the source lines. The touch sensing circuit receives the sensing signals via the gate lines for detecting the touch location.
Abstract:
The present invention relates to a touch detecting circuit, which comprises a touch driving circuit and a touch sensing circuit. The touch driving circuit generates a touch driving signal and provides it to at least one common electrode of a panel. The touch sensing circuit receives a plurality of sensing signals via a plurality of source lines or/and a plurality of gate lines of the panel for detecting the touch location. The sensing signals are generated corresponding to the touch driving signal. In addition, the touch driving circuit may provide the touch driving signal to the source lines. The touch sensing circuit receives the sensing signals via the gate lines for detecting the touch location.
Abstract:
A display panel driving method includes scanning a plurality of first gate lines of a plurality of gate lines according to a first predetermined order during a first time period of a frame period, and scanning a plurality of second gate lines of the gate lines according to a second predetermined order during a second time period of the frame period. Voltage polarity of a data signal located in any of a plurality of data lines remains unchanged during the first time period. Voltage polarity of the data signal located in any of the data lines remains unchanged during the second time period.