-
公开(公告)号:US12026221B2
公开(公告)日:2024-07-02
申请号:US18112944
申请日:2023-02-22
Applicant: Snowflake Inc.
Inventor: Michel Adar , Boxin Jiang , Qiming Jiang , John Reumann , Boyu Wang , Jiaxun Wu
IPC: G06F17/18
CPC classification number: G06F17/18
Abstract: Using an attributes model of a time series forecasting model, determine a set of features based on time series data, the set of features including periodic components. The time series data may be divided into a set of segments. For each segment of the set of segments, a weight may be assigned using an age of the segment, resulting in a set of weighted segments of time series data. Using a trend detection model of the time series forecasting model, trend data from the set of weighted segments of time series data may be determined. A time series forecast may be generated by combining the set of features and the trend data.
-
公开(公告)号:US11609970B1
公开(公告)日:2023-03-21
申请号:US17877588
申请日:2022-07-29
Applicant: Snowflake Inc.
Inventor: Michel Adar , Boxin Jiang , Qiming Jiang , John Reumann , Boyu Wang , Jiaxun Wu
IPC: G06F17/18
Abstract: A processing device may analyze a set of time series data using a time series forecasting model comprising an attributes model and a trend detection model. The attributes model may comprise a modified gradient boosting decision tree (GBDT) based algorithm. Analyzing the set of time series data comprises determining a set of features of the set of time series data, the set of features including periodic components as well as arbitrary components. A trend of the set of time series data may be determined using the trend detection model and the set of features and the trend may be combined to generate a time series forecast.
-
公开(公告)号:US20230401283A1
公开(公告)日:2023-12-14
申请号:US18112944
申请日:2023-02-22
Applicant: Snowflake Inc.
Inventor: Michel Adar , Boxin Jiang , Qiming Jiang , John Reumann , Boyu Wang , Jiaxun Wu
IPC: G06F17/18
CPC classification number: G06F17/18
Abstract: Using an attributes model of a time series forecasting model, determine a set of features based on time series data, the set of features including periodic components. The time series data may be divided into a set of segments. For each segment of the set of segments, a weight may be assigned using an age of the segment, resulting in a set of weighted segments of time series data. Using a trend detection model of the time series forecasting model, trend data from the set of weighted segments of time series data may be determined. A time series forecast may be generated by combining the set of features and the trend data.
-
-