摘要:
Provided are a photonic cross-connector system, a wavelength division multiplexing (WDM) system using the photonic cross-connector system, and an optical communication network based on the WDM system. The photonic cross-connector system includes: an optical coupler branching an input optical signal into a plurality of paths; a wavelength selective switch (WSS) extracting at least one wavelength signal from the input optical signal and outputting the extracted wavelength signal to at least one port; a WDM multi-casting apparatus simultaneously copying and reproducing the input optical signal into different wavelengths and changing modulation methods of the input optical signal into different types of modulation methods; an optical transmitter and/or receiver branching and coupling the input optical signal; and a control system controlling the optical coupler, the WSS, the WDM multicasting apparatus, and the optical transmitter and/or receiver.
摘要:
Disclosed is an optical signal transmitting apparatus including: an optical carrier generator configured to generate a plurality of optical carriers and outputs the optical carriers to optical modulators corresponding to the optical carriers, respectively; a plurality of optical modulators configured to modulate the optical carriers, respectively, according to an input signal; and an optical combiner configured to couple a plurality of optical signals from the plurality of optical modulators.
摘要:
The multi-core optical fiber amplifier according to an exemplary embodiment of the present invention having the above configuration includes: a double clad multi-core optical fiber including a plurality of cores, an internal cladding enclosing the plurality of cores, and an external cladding enclosing the internal cladding; a pumping light source outputting pumping light; an optical fiber to which pumping light from the pumping light source is input; and a wavelength division multiplexing coupler coupling the optical fiber with the double clad multi-core optical fiber to apply the pumping light input to the optical fiber from the pumping light source to the double clad multi-core optical fiber.
摘要:
Disclosed is an orthogonal frequency division multiplexing (OFDM) optical transmitter including a signal size adjustor for amplifying plural data signals modulated based on an OFDM scheme with different amplification rates so that each data signal is amplified according to a size of the corresponding data signal. Accordingly, it is possible to reduce a peak-to-average power ratio, and thus a nonlinear phenomenon generated in an optical line can be reduced and the quality of an OFDM optical signal can be improved.
摘要:
The present invention provides an interface apparatus between a dual-carrier optical transceiver and a WDM (wavelength division multiplexing) optical transmission line, including: an optical multiplexer configured to receive a first optical signal modulated by a first optical carrier and a second optical signal modulated by a second optical carrier from the dual-carrier optical transceiver, and multiplex the first optical signal and the second optical signal to output the signals to the optical transmission line; and an optical demultiplexer configured to receive the multiplexed optical signal from the optical transmission line and demultiplex the multiplexed optical signal to output the signals to the dual-carrier optical transceiver.
摘要:
Provided is an optical network node device. According to the optical network node device, a planar lightwave circuit (PLC) based or a blocker based 4-terminals ROADM can be used in a node of at least degree 3, a proceeding direction of a wavelength channel can be changed in an electrical cross connect switch, and transmission in a unit smaller than a wavelength channel can be cross connected, dropped, and added, or transmission capacity can be redistributed in the electrical cross connect switch. Accordingly, efficient transmission in a small capacity and large capacity transmission of a wavelength channel can be performed simultaneously, and thus an optical network can be effectively managed. Also, since the node of at least degree 3 uses the PLC based or a blocker based reconfigurable optical add drop multiplexer (ROADM), the node of at least degree 3 can use the same ROADM module as a node of degree 2. Accordingly, the optical network node device has an advantage in manufacturing and managing a node.