Abstract:
A Mach-Zehnder optical modulator is provide and has a travelling wave electrode extending over two optical waveguide branches and modulating the relative phase of the optical beam components propagating in those branches. The travelling wave electrode has transmission line conductors and pairs of waveguide electrodes, the waveguide electrodes of each pair being coupled to one of the optical waveguide branches, respectively. The travelling wave electrode further includes active devices having a high impedance input electrically connected to one of the transmission line conductors and a low impedance output electrically connected to one of the waveguide electrodes. Each active device transfers the electrical modulation signal from the associated transmission line conductor onto the associated waveguide electrode according to a voltage transfer function.
Abstract:
Mach-Zehnder optical modulators and IQ modulators based on a series push-pull travelling wave electrode are provided. The modulator includes a conductive backplane providing an electrical signal path. One or more voltage control taps are electrically connected to the conductive backplane within an area underneath the travelling wave electrode and provide an equalizing DC control voltage to the conductive backplane. In other variants, a plurality of conductive backplane segments are provided, and at least one voltage control tap is electrically connected to each conductive backplane segment within an area underneath the travelling wave electrode and provides a DC control voltage to the corresponding conductive backplane segment.