Abstract:
A method for integrating a constrained aircraft route(s) optimization application is implemented in an avionics onboard system comprising a DAL+ core computer and a DAL− peripheral computer for managing the application. The method of integration determines an optimal functional and physical distribution of the elementary functions OPT_RTE_FU(i) of the application within the onboard avionics system over the set of possible distributions which minimizes a global cost criterion CG, dependent on several parameters, including at least the additional development cost of the elementary functions integrated within the DAL+ digital core computer, and carries out the integration of the application.
Abstract:
Devices and methods implemented by a computer for connecting between a human-machine interface (e.g. graphical), supplied with data, in particular traffic and meteorology data, and a system for computing paths (e.g. avionic flight management), for interactive exploration of usable flight paths for managing the spatial congestion around the path of a vehicle are provided. Developments describe the particular case of an aircraft, such as mission management, the gathering of spatial, temporal or technical constraints relating to the spatial congestion within the determined potential airspace, the monitoring of changes in the spatial congestion of the airspace, excursions of the aircraft, miscellaneous displays, and n particular superimposed displays. Various types of human-machine interfaces are described, involving virtual or augmented reality and being configured to display data in 2D, 3D and/or 4D.
Abstract:
Various methods for regulating and/or for integrating avionic systems with non-avionic systems are described. An avionic system is generally associated with a physical fault rate that is lower and a logic verification that is higher than those of a non-avionic system. Developments describe notably the use: of remote computing resources; of comparison, test, verification and authorization steps before injection of data of non-avionic origin into the avionics; of human-machine interaction methods; of various parameters (weather, air traffic, etc.) for the purpose of combinatorial optimization; and of electronic flight bags EFB and of flight management systems FMS.