Abstract:
Device for receiving radio-navigation signals, for aiding the piloting of an aircraft, comprising a first master GNSS module and a second slave GNSS module which are dissimilar, the first master GNSS module comprising a first means for processing radio-navigation signals and a first means for computing guidance data (Xg), the second slave GNSS module comprising a second means for processing radio-navigation signals and a second means for computing guidance data (Xg) on the basis of the measurements provided by the said second means for processing signals, each GNSS module furthermore comprising a comparison means for comparing between the outputs Xg1,Xg2 of the said first and second means for computing guidance data, suitable for executing the following integrity test: |Xg1−Xg2|>Kg·√{square root over (Variance(Xg1−Xg2))} and for inferring an integrity defect if the said integrity test is satisfied.
Abstract:
Device for receiving radio-navigation signals, for aiding the piloting of an aircraft, comprising a first master GNSS module and a second slave GNSS module which are dissimilar, the first master GNSS module comprising a first means for processing radio-navigation signals and a first means for computing guidance data (Xg), the second slave GNSS module comprising a second means for processing radio-navigation signals and a second means for computing guidance data (Xg) on the basis of the measurements provided by the said second means for processing signals, each GNSS module furthermore comprising a comparison means for comparing between the outputs Xg1,Xg2 of the said first and second means for computing guidance data, suitable for executing the following integrity test: |Xg1−Xg2|>Kg·√{square root over (Variance(Xg1−Xg2))} and for inferring an integrity defect if the said integrity test is satisfied.