摘要:
This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node. The mux-node may route upstream communication signals received from the mini-fiber nodes as downstream signals to other mini-fiber nodes also connected to the mux-node without head-end interaction.
摘要:
A communication system between head-ends and end-users is provided which expands bandwidth and reliability. A concentrator receives communication signals from a head-end and forwards the received communication signals to one or more fiber nodes and/or one or more mini-fiber nodes. The concentrator demultiplexes/splits received signals for the mini-fiber nodes and the fiber nodes and forwards demultiplexed/split signals respectively. The mini-fiber nodes may combine signals received from the head-end with loop-back signals used for local medium access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and/or fiber node and transmitted to the concentrator. The concentrator multiplexes/couples the mini-fiber node and the fiber node upstream signals and forwards multiplexed/coupled signals to the head-end. Communication signals received from the mini-fiber nodes that are destined to other end-users also connected to the mini-fiber nodes may be routed by the concentrator without head-end interaction.
摘要:
A communication network uses intermediate nodes to resolve local traffic contention. Intermediate nodes receive upstream signals from end users, derive traffic information signals from the upstream signals, and transmit the traffic information signals to end users. By listening to the traffic information signals from the intermediate node, the end users know whether the upstream transmission channels are idle or busy, or whether a collision has occurred. The intermediate nodes derive and transmit the traffic information signals with or without the assistance of the central office or head end.
摘要:
A converter apparatus (Mini Fiber Node MFN) for use in a communication network (e.g., a coax network) includes a signal distribution unit (e.g., fiber node FN) for transmitting frequency-division multiplexed communication signals downstream over a coax cable to a node apparatus (amplifier) and via an access path to a plurality of end unit apparatuses connected thereto. The converter apparatus connects to the access path and receives downstream second FDM signals directly from the central office over an optical communication path and sends the second FDM signals to at least one end unit apparatus over the access path. The converter apparatus also receives upstream FDM signals from the at least one end unit apparatus over the access path and transmits the upstream FDM signals to the central office over the optical path. In another embodiment, the converter apparatus connects directly to the primary path to provide service to an end user apparatus connected in a "tapped-bus" arrangement.
摘要:
This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node. The mux-node may route upstream communication signals received from the mini-fiber nodes as downstream signals to other mini-fiber nodes also connected to the mux-node without head-end interaction.
摘要:
A communication system between head-ends and end-users is provided which expands bandwidth and reliability. A concentrator receives communication signals from a head-end and forwards the received communication signals to one or more fiber nodes and/or one or more mini-fiber nodes. The concentrator demultiplexes/splits received signals for the mini-fiber nodes and the fiber nodes and forwards demultiplexed/split signals respectively. The mini-fiber nodes may combine signals received from the head-end with loop-back signals used for local medium access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and/or fiber node and transmitted to the concentrator. The concentrator multiplexes/couples the mini-fiber node and the fiber node upstream signals and forwards multiplexed/coupled signals to the head-end. Communication signals received from the mini-fiber nodes that are destined to other end-users also connected to the mini-fiber nodes may be routed by the concentrator without head-end interaction.
摘要:
This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node. The mux-node may route upstream communication signals received from the mini-fiber nodes as downstream signals to other mini-fiber nodes also connected to the mux-node without head-end interaction.
摘要:
A monitoring apparatus and method are provided for a communication system in which a central office communicates to at least one end unit using intermediate remote nodes. The remote node receives signals from both the central office and the end units. Each remote node can be equipped with apparatus for monitoring the integrity of paths of the communication system. The monitoring apparatus can include a mixing device that mixes received signals to produce combined signals. The received signals generally include a pilot signal sent from the central office and a data signal sent from the at least one end unit. The state of the communication system is analyzed based on the combined signals. If the combined signals includes only the data signal from the end unit, the path through which the pilot signal was sent is inoperative. If the combined signals includes only the pilot signal, the transmission path from the end unit over which the data signal is sent is inoperative. If the combined signals are not received at the central office after transmission of the pilot signal, a determination is made that any part of transmission path could be inoperative.
摘要:
This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node. The mux-node may route upstream communication signals received from the mini-fiber nodes as downstream signals to other mini-fiber nodes also connected to the mux-node without head-end interaction.
摘要:
This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node. The mux-node may route upstream communication signals received from the mini-fiber nodes as downstream signals to other mini-fiber nodes also connected to the mux-node without head-end interaction.