Abstract:
A heat shield comprising a base portion, a top portion, and a tapered portion extending between the top portion and the bottom portion is described herein, in accordance with various embodiments. The base portion may comprise a sheet metal bounding a triangular void. The top portion may comprise a sheet metal bounding an ovular void.
Abstract:
A variable cross-section tube adapter (VCSTA) is described herein. The VCSTA is configured to decrease bending stresses in high performance oval or circular tubes. Specifically, the VCSTA is configured decrease bending stresses in high performance oval or circular tubes between substantially the end of the tube and the housing and/or base to which the tube is coupled. A variable cross-section double wall tube (VCSDWT) profile is also described herein. For instance, VCSDWT may comprise an integral curved profile (bell shape) portion.
Abstract:
A fitting is configured to couple a portion of a frame of a turbine and a bearing housing on an aircraft engine. The fitting includes a first receptacle configured to seat a tube that is configured to convey oil or air, and at least a second receptacle configured to seat a corresponding at least two bolts associated with the bearing housing, wherein the fitting comprises sections between the first receptacle and the at least a second receptacle that have a material thickness in a range of 3.175 millimeters and 6.35 millimeters.
Abstract:
A heat shield comprising a sidewall portion, a top portion, and a plurality of flexible tabs attached to the sidewall portion is described herein, in accordance with various embodiments. The top portion may comprise an aperture. The sidewall portion may extend at an angle between 80 degrees and 100 degrees from the top portion. The sidewall portion may bound a hexagonal void. The flexible tab may comprise an angle between 80 degrees and 100 degrees. The flexible tab may be fixed to the sidewall portion, wherein the flexible tab is configured to be attached to a fitting.
Abstract:
A heat shield may include a base portion, wherein the base portion bounds a triangular void, a top portion, wherein the top portion bounds an ovular void, and a tapered portion, wherein the tapered portion extends between the base portion and the top portion, the top portion having a smaller cross-sectional area than the base portion.
Abstract:
A coupling arrangement for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a conduit between a first frame case defining a frame axis and a second frame case. A flange is coupled to the conduit defining a first axis and abuts the first frame case. A capture plate coupled to the conduit defines a second axis and abuts the second frame case. The first axis is offset relative to the second axis in an axial direction relative to the frame axis.
Abstract:
A coupling arrangement for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a conduit between a first frame case defining a frame axis and a second frame case. A flange is coupled to the conduit defining a first axis and abuts the first frame case. A capture plate coupled to the conduit defines a second axis and abuts the second frame case. The first axis is offset relative to the second axis in an axial direction relative to the frame axis.
Abstract:
Aspects of the disclosure are directed to a fitting configured to couple a portion of a frame of a turbine and a bearing housing on an aircraft engine, comprising: a first receptacle configured to seat a tube that is configured to convey oil or air, and at least a second receptacle configured to seat a corresponding at least two bolts associated with the bearing housing, wherein the fitting comprises sections between the first receptacle and the at least a second receptacle that have a material thickness in a range of 3.175 millimeters and 6.35 millimeters.