Abstract:
The invention provides a fatigue exciter for wind turbine blades. Wind turbine blades require excitation at or near their natural frequency to induce bending moments that simulate in service loadings and must be easily controllable and with the minimum of unnecessary added mass or force. The invention provides a device and a method by which force controlled feedback is used for finding an optimal excitation frequency. This force could be provided e.g. by a digital signal generator.
Abstract:
The application relates to an apparatus (100) for fatigue testing a wind turbine blade, and to a system and method using such an apparatus (100). The apparatus (100) comprises a base (110) for supporting a first end (12) of the wind turbine blade (10), and an edgewise actuator assembly (120). The edgewise actuator assembly (120) includes a ground-supported edgewise actuator (130) and a flexible cable assembly (140) for connecting the edgewise actuator (130) to the blade (10). The edgewise actuator (130) and the flexible cable assembly (140) are adapted to cyclically deflect the blade (10) relative to the base in the edgewise direction by repeatedly pulling the blade (10) in a substantially horizontal direction.
Abstract:
The application relates to an apparatus (100) for fatigue testing a wind turbine blade, and to a system and method using such an apparatus (100). The apparatus (100) comprises a base (110) for supporting a first end (12) of the wind turbine blade (10), and an edgewise actuator assembly (120). The edgewise actuator assembly (120) includes a ground-supported edgewise actuator (130) and a flexible cable assembly (140) for connecting the edgewise actuator (130) to the blade (10). The edgewise actuator (130) and the flexible cable assembly (140) are adapted to cyclically deflect the blade (10) relative to the base in the edgewise direction by repeatedly pulling the blade (10) in a substantially horizontal direction.
Abstract:
The invention provides a fatigue exciter for wind turbine blades. Wind turbine blades require excitation at or near their natural frequency to induce bending moments that simulate in service loadings and must be easily controllable and with the minimum of unnecessary added mass or force. The invention provides a device and a method by which force controlled feedback is used for finding an optimal excitation frequency. This force could be provided e.g. by a digital signal generator.