Byzantine Fault Tolerance with Verifiable Secret Sharing at Constant Overhead

    公开(公告)号:US20200151066A1

    公开(公告)日:2020-05-14

    申请号:US16740315

    申请日:2020-01-10

    Applicant: VMware, Inc.

    Abstract: Techniques for implementing Byzantine fault tolerance with verifiable secret sharing at constant overhead are provided. In one set of embodiments, a client can determine a secret value s to be shared with N replicas in a distributed system, s being input data for a service operation provided by the N replicas. The client can further encode s into an f-degree polynomial P(x) where f corresponds to a maximum number of faulty replicas in the distributed system, evaluate P(x) at i for i=1 to N resulting in N evaluations P(i), generate at least one f-degree recovery polynomial R(x) based on a distributed pseudo-random function (DPRF) fα(x), and evaluate R(x) at i for i=1 to N resulting in at least N evaluations R(i). The client can then invoke the service operation, the invoking comprising transmitting a message including P(i) and R(i) to each respective replica i.

    Byzantine Fault Tolerance with Verifiable Secret Sharing at Constant Overhead

    公开(公告)号:US20190129809A1

    公开(公告)日:2019-05-02

    申请号:US15729568

    申请日:2017-11-01

    Applicant: VMware, Inc.

    Abstract: Techniques for implementing Byzantine fault tolerance with verifiable secret sharing at constant overhead are provided. In one set of embodiments, a client can determine a secret value s to be shared with N replicas in a distributed system, s being input data for a service operation provided by the N replicas. The client can further encode s into an f-degree polynomial P(x) where f corresponds to a maximum number of faulty replicas in the distributed system, evaluate P(x) at i for i=1 to N resulting in N evaluations P(i), generate at least one f-degree recovery polynomial R(x) based on a distributed pseudo-random function (DPRF) fα(x), and evaluate R(x) at i for i=1 to N resulting in at least N evaluations R(i). The client can then invoke the service operation, the invoking comprising transmitting a message including P(i) and R(i) to each respective replica i.

    Byzantine fault tolerance with verifiable secret sharing at constant overhead

    公开(公告)号:US10572352B2

    公开(公告)日:2020-02-25

    申请号:US15729568

    申请日:2017-11-01

    Applicant: VMware, Inc.

    Abstract: Techniques for implementing Byzantine fault tolerance with verifiable secret sharing at constant overhead are provided. In one set of embodiments, a client can determine a secret value s to be shared with N replicas in a distributed system, s being input data for a service operation provided by the N replicas. The client can further encode s into an f-degree polynomial P(x) where f corresponds to a maximum number of faulty replicas in the distributed system, evaluate P(x) at i for i=1 to N resulting in N evaluations P(i), generate at least one f-degree recovery polynomial R(x) based on a distributed pseudo-random function (DPRF) fα(x), and evaluate R(x) at i for i=1 to N resulting in at least N evaluations R(i). The client can then invoke the service operation, the invoking comprising transmitting a message including P(i) and R(i) to each respective replica i.

    Byzantine fault tolerance with verifiable secret sharing at constant overhead

    公开(公告)号:US11354199B2

    公开(公告)日:2022-06-07

    申请号:US16740315

    申请日:2020-01-10

    Applicant: VMware, Inc.

    Abstract: Techniques for implementing Byzantine fault tolerance with verifiable secret sharing at constant overhead are provided. In one set of embodiments, a client can determine a secret value s to be shared with N replicas in a distributed system, s being input data for a service operation provided by the N replicas. The client can further encode s into an f-degree polynomial P(x) where f corresponds to a maximum number of faulty replicas in the distributed system, evaluate P(x) at i for i=1 to N resulting in N evaluations P(i), generate at least one f-degree recovery polynomial R(x) based on a distributed pseudo-random function (DPRF) fα(x), and evaluate R(x) at i for i=1 to N resulting in at least N evaluations R(i). The client can then invoke the service operation, the invoking comprising transmitting a message including P(i) and R(i) to each respective replica i.

Patent Agency Ranking