Abstract:
A governor assembly, an elevator safety device, and an elevator system. The governor assembly includes: a bracket; a rotatable rope sheave mounted on the bracket; and a centrifugal mechanism associated with the rope sheave, a plurality of centrifugal members being capable of unfolding under an inertial force associated with the speed of the rope sheave; the centrifugal mechanism includes: a plurality of centrifugal members pivotally connected to the rope sheave; and a retaining mechanism by which the plurality of centrifugal members are retained in a contraction position; the retaining mechanism is configured to retain the plurality of centrifugal members in the contraction position when the speed of the rope sheave increases to a first threshold with an acceleration smaller than a first acceleration.
Abstract:
An overspeed governor for a stairlift includes a governor frame mountable to a carriage of a stairlift. A wheel is engageable with a rail of the stairlift along which the carriage is moveable. Translation of the carriage along the rail is transformed into rotation of the wheel or vice versa. A safety braking device has a braking surface movable between a first position and a third position. In the first position the braking surface is not allowed to engage the rail. A braking member is coupled to the wheel such that when said wheel rotates at a speed at or above a predetermined threshold, the braking member is moved from the first position to the third position. In the third position the braking surface engages said rail with a braking force to stop movement of the carriage along the rail. A soft landing means gradually slows movement of the carriage.
Abstract:
Elevator braking systems. The elevator braking system comprises a wedge having a curved wedge bearing race and a clamping jaw having a curved jaw bearing race. The elevator braking system includes a roller bearing assembly. The assembly has two cages and a spacer maintains a space between the two cages. A plurality of rollers is rotatably coupled to the two cages. Each of the plurality of rollers is barrel shaped. A first side of the roller bearing assembly is configured to be coupled to the wedge via the curved wedge bearing race. A second side of the roller bearing assembly is configured to be coupled to the clamping jaw via the curved jaw bearing race.
Abstract:
A system and method for controlling speed of an elevator car in an elevator system is disclosed. The elevator car may have a speed governor adapted to trip when an electrical tripping point of the speed governor is reached. The elevator system may also have a control system for controlling operation of the elevator car, the control system providing a speed reducing switch adapted to trip when a software tripping point of the speed reducing switch is reached, the software tripping point being reached before the electrical tripping point of the speed governor.
Abstract:
A governor includes a housing, a pulley, a belt, a first flyweight, and second flyweight. The housing defines a housing cavity. The pulley is disposed at least partially within the housing cavity. The belt is in contact with the pulley. The belt is operable to rotate the pulley at a rotational speed. The first and second flyweights are pivotably connected to the pulley, and are biased towards one another. At least a portion of the first and second flyweights are operable to move away from the pulley when the rotational speed of the pulley is increasing toward a predetermined threshold rotational speed. The first and second flyweights are operable to contact the housing, and thereby transmit rotational energy to the housing, when the rotational speed of the pulley is equal to at least the predetermined threshold rotational speed.
Abstract:
The object of the invention is an elevator provided with a safety device arrangement, which elevator comprises at least an elevator car traveling along guide rails and a safety brake device for stopping unintended movement of the elevator car. The safety device arrangement comprises a tuning apparatus disposed on the elevator car for detecting a presence on the roof of the elevator car.
Abstract:
An exemplary elevator governor device includes a sheave that is configured to move responsive to movement of a rope that moves with an elevator car. A stop member selectively moves into an engaged position in which the stop member is positioned to engage a portion of the rope to prevent movement of the rope. The stop member has a generally cylindrical outer surface for engaging the rope.
Abstract:
An elevator system 40 includes an over-acceleration and over-speed protection system capable of triggering a machine room brake and a safety trigger when over-speed or over-acceleration conditions are detected. The system includes a speed detector 42 and an acceleration detector 44. Based upon sensed speed and sensed acceleration, the controller 48 calculates a filtered speed of an elevator mass such as an elevator car 16 or counterweight, and compares the filtered speed to the threshold speed to determine whether an over-speed condition has been reached. The controller 48 activates a machine room brake when an over-speed condition exists, and engages an elevator safety 70A, 70B when it determines that the elevator mass is still in an over-speed condition after the machine room brake has been activated.
Abstract:
An elevator governor capable of setting first overspeeds different between a rising time and a descending time by a simple configuration and at a low cost without the need for electric power supply from the outside. For this purpose, a weight that is moved in a predetermined direction by receiving a centrifugal force according to a travel speed at the rising time and the descending time of a car, an elastic body urged by movement of the weight having received the centrifugal force, and an actuating device actuates a stop switch when the weight having received the centrifugal force moves to a predetermined position against an urging force of the elastic body are provided, and also a switching device driven by the rising/descending operation of the car is provided. By the switching device, the length of the elastic body at the time when the actuating devices actuates the stop switch is switched to a length different according to the rising/descending direction of the car.
Abstract:
The invention relates to an overspeed detection mechanism in lift apparatuses, safety device acting against overspeed and a lift apparatus, which detection mechanism can be assembled on a sheave or on the elevator car. It incorporates a wheel rotating according to the speed of the car and has pivoting arms swinging through the centrifugal force during the rotation of the wheel. It has magnetic means associated to the pivoting arms causing an attraction maintaining the position of the pivoting arms until the centrifugal force exceeds the attraction of the magnetic means. It incorporates a stop, belonging to a part external to the wheel against which the pivoting arm comes into contact when the centrifugal force generated on the pivoting arm due to the overspeed of the elevator car exceeds the attractive force of the magnetic means, starting the braking of the car.