摘要:
A method for generating one or more geological models for oil field exploration. The method includes receiving one or more well facies logs, a vertical facies proportion curve, a lateral proportion map, a variogram model and a global target histogram. The method then includes generating a facies probability cube using a modified Sequential Gaussian Simulation (SGSIM) algorithm, the well facies logs, the vertical facies proportion curve, the lateral proportion map and the variogram model. After generating the facies probability cube, the method includes matching the facies probability cube to the global histogram and generating the geological models based on the matched facies probability cube.
摘要:
A well constrained horizontal variable height-velocity curve constructing method for seismic wave velocity field construction involves the steps of: a) calculating horizon velocity of each horizon by a sonic logging curve, and calculating the conversion horizon velocity of each horizon; b) drawing a circle to collect well points; c) calculating the characteristic parameter values of the height-velocity curve by the horizon velocity and the conversion horizon velocity of each well; d) calculating the characteristic parameter values by Kriging interpolation.
摘要:
A method for generating one or more geological models for oil field exploration. The method includes receiving one or more well facies logs, a vertical facies proportion curve, a lateral proportion map, a variogram model and a global target histogram. The method then includes generating a facies probability cube using a modified Sequential Gaussian Simulation (SGSIM) algorithm, the well facies logs, the vertical facies proportion curve, the lateral proportion map and the variogram model. After generating the facies probability cube, the method includes matching the facies probability cube to the global histogram and generating the geological models based on the matched facies probability cube.
摘要:
In an exemplary embodiment, a method and system is disclosed for developing a subterranean geomechanics model of a complex geological environment. The method can include estimating a pore pressure field, a stress field, a geomechanics property field, and a geological structure field from a geological concept model; geostatistically interpolating vectors and tensors from the estimated fields; and combining the results from the estimated fields and the geostatistically interpolated vectors and tensors to derive a geostatistical geomechanical model of the geological environment.
摘要:
In certain embodiments, a method includes generating a set of average velocity controls based on received seismic data, generating a depth to basement model based on received potential fields data, and generating an average velocity model using an interpolation model to interpolate the set of average velocity controls and the depth to basement model. The method may also include generating a variogram model based on the set of average velocity controls, and generating the average velocity model using the interpolation model to interpolate the average velocity controls, the variogram model, and the depth to basement model. The interpolation model may be Kriging with external drift. The external drift may be based on the depth to basement model. Additionally, the method includes generating a structural map of a subsurface formation using the average velocity model.
摘要:
The present disclosure relates to systems, methods, and non-transitory computer-readable media for dynamically utilizing offset drill-well data generated within a threshold geographic area to determine formation-top trends and identify formation-top depths at a subject drill-well site. To do so, in some embodiments, the disclosed systems estimate a variogram for observed formation-top depths of a subset of offset drill-wells, and, in turn, map a predicted response from the estimated variogram. For example, using weighted combinations (e.g., with Kriging weights) of the formation-top depths of the subset of offset drill-wells, the disclosed systems can map a continuous surface of a formation and identify a top-depth thereof. Moreover, the disclosed system can do so for multiple formations at the subject drill-well site, and (in real-time in response to a user input) provide for display at a client device, the associated formation-top depths, various predicted drilling events and/or predicted drilling metrics.
摘要:
In an exemplary embodiment, a method and system is disclosed for developing a subterranean geomechanics model of a complex geological environment. The method can include estimating a pore pressure field, a stress field, a geomechanics property field, and a geological structure field from a geological concept model; geostatistically interpolating vectors and tensors from the estimated fields; and combining the results from the estimated fields and the geostatistically interpolated vectors and tensors to derive a geostatistical geomechanical model of the geological environment.
摘要:
Methods, systems, and computer readable media for gridding of subsurface salt structures include determining a predetermined area lacks three dimensional seismic coverage, generating a two dimensional seismic top salt interpretation for the predetermined area, generating a bathymetry elevation of the predetermined area, determining that at least one two dimensional seismic line intersects a bathymetric feature of interest, and determining a correlation coefficient between the two dimensional seismic top salt interpretation and the bathymetry elevation. The method may further include determining the correlation coefficient is greater than a predetermined threshold value, and applying the bathymetry elevation as an additional control for gridding top of the subsurface salt structure. The step of gridding the top of the subsurface salt structure may further include applying at least one of kriging with external drift (KED), polygon-based approaches, regression-kriging, and other geostatistical methods.
摘要:
A well constrained transverse variable height-velocity curve constructing method for seismic wave velocity field construction involves the steps of: a) calculating interval velocity of each stratum by a sonic logging curve, and calculating the conversion horizon velocity of each horizon; b) drawing a circle to collect well points; c) calculating the characteristic parameter values of the height-velocity curve by the interval velocity and the conversion interval velocity of each well; d) calculating the characteristic parameter values by Kriging interpolation.
摘要:
A computer-aided method of downscaling a three-dimensional geological model by generating numerical stochastic fine-scale models conditioning to data of different scales and capturing spatial uncertainties which involves a downscaling algorithm.