Abstract:
In one embodiment, a device in a network captures a first set of packets based on first packet capture criterion. The captured first set of packets is provided for deep packet inspection and anomaly detection. The device receives a second packet capture criterion that differs from the first packet capture criterion. The device captures a second set of packets based on the second packet capture criterion. The device provides the captured second set of packets for deep packet inspection and anomaly detection. The anomaly detection of the captured first and second sets of packets is performed by a machine learning-based anomaly detector configured to generate anomaly detection results based in part on one or more traffic metrics gathered from the network and based further in part on deep packet inspection results of packets captured in the network.
Abstract:
In one embodiment, a first data set is received by a network device that is indicative of the statuses of a plurality of network devices when a type of network attack is not present. A second data set is also received that is indicative of the statuses of the plurality of network devices when the type of network attack is present. At least one of the plurality simulates the type of network attack by operating as an attacking node. A machine learning model is trained using the first and second data set to identify the type of network attack. A real network attack is then identified using the trained machine learning model.
Abstract:
In one embodiment, a device in a network receives feedback regarding an anomaly reporting mechanism used by the device to report network anomalies detected by a plurality of distributed learning agents to a user interface. The device determines an anomaly assessment rate at which a user of the user interface is expected to assess reported anomalies based in part on the feedback. The device receives an anomaly notification regarding a particular anomaly detected by a particular one of the distributed learning agents. The device reports, via the anomaly reporting mechanism, the particular anomaly to the user interface based on the determined anomaly assessment rate.
Abstract:
In one embodiment, a device in a network captures a first set of packets based on first packet capture criterion. The captured first set of packets is provided for deep packet inspection and anomaly detection. The device receives a second packet capture criterion that differs from the first packet capture criterion. The device captures a second set of packets based on the second packet capture criterion. The device provides the captured second set of packets for deep packet inspection and anomaly detection. The anomaly detection of the captured first and second sets of packets is performed by a machine learning-based anomaly detector configured to generate anomaly detection results based in part on one or more traffic metrics gathered from the network and based further in part on deep packet inspection results of packets captured in the network.
Abstract:
In one embodiment, a device determines that a machine learning model is to be trained by a plurality of devices in a network. A set of training devices are identified from among the plurality of devices to train the model, with each of the training devices having a local set of training data. An instruction is then sent to each of the training devices that is configured to cause a training device to receive model parameters from a first training device in the set, use the parameters with at least a portion of the local set of training data to generate new model parameters, and forward the new model parameters to a second training device in the set. Model parameters from the training devices are also received that have been trained using a global set of training data that includes the local sets of training data on the training devices.
Abstract:
In one embodiment, techniques are shown and described relating to a distributed approach for feature modeling on an LLN using principal component analysis. In one specific embodiment, a computer network has a plurality of nodes and a router. The router is configured to select one or more nodes of the plurality of nodes that will collaborate with the router for collectively computing a model of respective features for input to a Principal Component Analysis (PCA) model. In addition, the selected one or more nodes and the router are configured to perform a distributed computation of a PCA model between the router and the selected one or more nodes.
Abstract:
In one embodiment, possible voting nodes in a network are identified. The possible voting nodes each execute a classifier that is configured to select a label from among a plurality of labels based on a set of input features. A set of one or more eligible voting nodes is selected from among the possible voting nodes based on a network policy. Voting requests are then provided to the one or more eligible voting nodes that cause the one or more eligible voting nodes to select labels from among the plurality of labels. Votes are received from the eligible voting nodes that include the selected labels and are used to determine a voting result.
Abstract:
In one embodiment, attack detectability metrics are received from nodes along a path in a network. The attack detectability metrics from the nodes along the path are used to compute a path attack detectability value. A determination is made as to whether the path attack detectability value satisfies a network policy and one or more routing paths in the network are adjusted based on the path attack detectability value not satisfying the network policy.
Abstract:
In one embodiment, a network node receives a voting request from a neighboring node that indicates a potential network attack. The network node determines a set of feature values to be used as input to a classifier based on the voting request. The network node also determines whether the potential network attack is present by using the set of feature values as input to the classifier. The network node further sends a vote to the neighboring node that indicates whether the potential network attack was determined to be present.
Abstract:
In one embodiment, a device determines that a machine learning model is to be trained by a plurality of devices in a network. A set of training devices are identified from among the plurality of devices to train the model, with each of the training devices having a local set of training data. An instruction is then sent to each of the training devices that is configured to cause a training device to receive model parameters from a first training device in the set, use the parameters with at least a portion of the local set of training data to generate new model parameters, and forward the new model parameters to a second training device in the set. Model parameters from the training devices are also received that have been trained using a global set of training data that includes the local sets of training data on the training devices.