Abstract:
In one embodiment, a particular maintenance end-point (MEP) transmits, during a joining phase, one or more join announcement messages (JAMs) to other MEPs in a network. The one or more JAMs request addition of the particular MEP without generation of a first alarm. The particular MEP transmits, during an operational phase, continuity check messages (CCMs) to the other MEPs in the network. Alarm generation is active during the operational phase. The particular MEP transmits, during a leaving phase, one or more leave announcement messages (LAMs) to the other MEPs in the network. The one or more LAMs request removal of the particular MEP without generation of a second alarm.
Abstract:
An example method for facilitating conflict avoidant traffic routing in a network environment is provided and includes detecting, at a network element, an intent conflict at a peer network element in a network, and changing a forwarding decision at the network element to steer traffic around the conflicted peer network element. The intent conflict refers to an incompatibility between an asserted intent associated with the traffic and an implemented intent associated with the traffic. In specific embodiments, the detecting includes mounting rules from the peer network element into the network element, and analyzing the mounted rules to determine intent conflict. In some embodiments, a central controller in the network deploys one or more intentlets on a plurality of network elements in the network according to corresponding intent deployment parameters.
Abstract:
In one embodiment, a particular PE device of a plurality of multi-homing PE devices between a core network and a local network determines a subset of traffic for which the particular PE device is responsible. The particular PE also establishes, with itself as root, a multicast tree within the local network for underlay multicast groups. Traffic received at the particular PE from the core network is admitted into the local network only if the core traffic corresponds to the subset of traffic for which the particular PE device is responsible (and mapped into one of the underlay multicast groups for which the particular PE device is the root). Also, multicast traffic received at the particular PE from the local network is forwarded into the core network only if the multicast traffic corresponds to the subset of traffic for which the particular PE device is responsible.
Abstract:
In one embodiment, a broker device receives device-identifying data to identify a device in a computer network. An ontology associated with the device-identifying data is then identified by the broker device and in response to identifying the ontology, interpretation instructions related to the identified ontology are determined. The broker device receives data from the identified device and interprets the received data based on the interpretation instructions.
Abstract:
In one embodiment, one or more point-to-point (P2P) services are established between attachment circuits on provider edge (PE) devices in a computer network, and each of the one or more P2P services (e.g., Virtual Private Wire Service, VPWS) are associated with an Ethernet virtual private network (E-VPN) Ethernet Auto-Discovery (A-D) route, where links between the PE devices and customer edge (CE) devices are configured as Ethernet interfaces with Ethernet tagging. As such, the Ethernet A-D route may then be exchanged for each P2P service attachment circuit, and forwarding can be performed on the one or more P2P services without performing a media access control (MAC) address lookup and without performing MAC learning.
Abstract:
A method is provided in one example and includes receiving a current bandwidth characteristic for a link, where the current bandwidth characteristic is determined under fading conditions associated with signal propagation on the link. The method can also include calculating a new cost for the link that is different from a nominal cost associated with a nominal bandwidth of the link without the fading conditions. The method could also include routing at least a portion of a plurality of flows that are to traverse the link away from the link based, at least in part, on the new cost. Another example method includes receiving the current bandwidth characteristic for the link, comparing the current bandwidth characteristic with a preconfigured low watermark corresponding to a class-specific MTR topology associated with a class of traffic traversing the link, and removing the link from the MTR topology based on the current bandwidth characteristic.
Abstract:
In one embodiment, an aggregation device is configured to aggregate traffic of a plurality of customer edge (CE) devices into a single bridge-domain. The aggregation device receives connectivity fault management (CFM) packets of a CFM protocol from the plurality of CE devices. Each received CFM packet includes a media access control (MAC) address of an access port of the CE device from which the CFM packet was transmitted. The aggregation device detects conflicting MAC addresses between access ports of CE devices by comparing MAC addresses of the received CFM packets. The aggregation device notifies one or more of the plurality of CE devices of the conflict.