摘要:
A catalytic converter includes a casing tube having a given internal diameter. At least two individual honeycomb bodies through which a fluid can flow in a given flow direction, are disposed in the casing tube. The honeycomb bodies are formed of structured metal layers forming flow channels. The layers are joined to the casing tube by joining techniques, such as hard brazing. The honeycomb bodies have a given theoretical strain-free diameter and have an internal layout making the honeycomb bodies elastic and permitting the honeycomb bodies to be inserted into the casing tube with an elastic compression of from 2 to 10% of the given theoretical strain-free diameter and with prestress. A method for producing a catalytic converter includes forming at least two honeycomb bodies with a given theoretical strain-free diameter from structured metal layers defining channels through which a fluid can flow in a given direction. The honeycomb bodies are subsequently successively or simultaneously inserted with prestress from at least one side into a prefabricated casing tube having a given internal diameter. The honeycomb bodies are elastically compressed by from 2 to 10% of the given theoretical strain-free diameter and/or at least partial regions of the casing tube are subsequently plastically compressed by from 2 to 10% of the given internal diameter. The layers are joined to the casing tube.
摘要:
A honeycomb body, especially a catalyst carrier body, includes a jacket having a central region. A multiplicity of at least partially structured metal sheets define a multiplicity of channels through which fluid can flow. The metal sheets are disposed in at least three bundles in the jacket. At least three of the bundles are each folded about a respective bending line disposed in the central region and are entwined in the same direction about one another and about the central region while folded.
摘要:
A process for manufacturing a honeycomb body having a multiplicity of at least partly structured metal sheets defining a multiplicity of channels through which a fluid can flow includes stacking at least partly structured metal sheets into a plurality of bundles of metal sheets having ends. Each bundle is folded about a respective bending line defining a folded edge of each bundle and the folded edges are simultaneously or subsequently moved toward a central region. The ends of the folded bundles are entwined in the same direction, such as by rotating the central region and contracting a form surrounding the bundles. The entwined bundles are encased in a prefabricated jacket by pushing the entwined bundles into the prefabricated jacket or surrounding the entwined bundles with the prefabricated jacket.