INTERPRETING CONVOLUTIONAL SEQUENCE MODEL BY LEARNING LOCAL AND RESOLUTION-CONTROLLABLE PROTOTYPES

    公开(公告)号:US20240028897A1

    公开(公告)日:2024-01-25

    申请号:US18479326

    申请日:2023-10-02

    CPC classification number: G06N3/08 G06N3/04

    Abstract: A method interprets a convolutional sequence model. The method converts an input data sequence having input segments into output features. The method clusters the input segments into clusters using respective resolution-controllable class prototypes allocated to each of classes. Each respective class prototype includes a respective output feature subset characterizing a respective associated class. The method calculates, using the clusters, similarity scores that indicate a similarity of an output feature to a respective class prototypes responsive to distances between the output feature and the respective class prototypes. The method concatenates the similarity scores to obtain a similarity vector. The method performs a prediction and prediction support operation that provides a value of prediction and an interpretation for the value responsive to the input segments and similarity vector. The interpretation for the value of prediction is provided using only non-negative weights and lacking a weight bias in the fully connected layer.

    MULTI-MODALITY DATA ANALYSIS ENGINE FOR DEFECT DETECTION

    公开(公告)号:US20230152791A1

    公开(公告)日:2023-05-18

    申请号:US17984413

    申请日:2022-11-10

    CPC classification number: G05B23/0221 G06N20/00 G05B23/0235 G05B23/0237

    Abstract: Systems and methods for defect detection for vehicle operations, including collecting a multiple modality input data stream from a plurality of different types of vehicle sensors, extracting one or more features from the input data stream using a grid-based feature extractor, and retrieving spatial attributes of objects positioned in any of a plurality of cells of the grid-based feature extractor. One or more anomalies are detected based on residual scores generated by each of cross attention-based anomaly detection and time-series-based anomaly detection. One or more defects are identified based on a generated overall defect score determined by integrating the residual scores for the cross attention-based anomaly detection and the time-series based anomaly detection being above a predetermined defect score threshold. Operation of the vehicle is controlled based on the one or more defects identified.

    DATA FUSION AND ANALYSIS ENGINE FOR VEHICLE SENSORS

    公开(公告)号:US20230112441A1

    公开(公告)日:2023-04-13

    申请号:US17961169

    申请日:2022-10-06

    Abstract: Systems and methods for data fusion and analysis of vehicle sensor data, including receiving a multiple modality input data stream from a plurality of different types of vehicle sensors, determining latent features by extracting modality-specific features from the input data stream, and aligning a distribution of the latent features of different modalities by feature-level data fusion. Classification probabilities can be determined for the latent features using a fused modality scene classifier. A tree-organized neural network can be trained to determine path probabilities and issue driving pattern judgments, with the tree-organized neural network including a soft tree model and a hard decision leaf. One or more driving pattern judgments can be issued based on a probability of possible driving patterns derived from the modality-specific features.

    Protocol-independent anomaly detection

    公开(公告)号:US11297082B2

    公开(公告)日:2022-04-05

    申请号:US16535521

    申请日:2019-08-08

    Abstract: A computer-implemented method for implementing protocol-independent anomaly detection within an industrial control system (ICS) includes implementing a detection stage, including performing byte filtering using a byte filtering model based on at least one new network packet associated with the ICS, performing horizontal detection to determine whether a horizontal constraint anomaly exists in the at least one network packet based on the byte filtering and a horizontal model, including analyzing constraints across different bytes of the at least one new network packet, performing message clustering based on the horizontal detection to generate first cluster information, and performing vertical detection to determine whether a vertical anomaly exists based on the first cluster information and a vertical model, including analyzing a temporal pattern of each byte of the at least one new network packet.

    META-LEARNING SYSTEM AND METHOD FOR DISENTANGLED DOMAIN REPRESENTATION LEARNING

    公开(公告)号:US20220076135A1

    公开(公告)日:2022-03-10

    申请号:US17391526

    申请日:2021-08-02

    Abstract: A method for employing meta-learning based feature disentanglement to extract transferrable knowledge in an unsupervised setting is presented. The method includes identifying how to transfer prior knowledge data from a plurality of source domains to one or more target domains, extracting domain dependence features and domain agnostic features from the prior knowledge data, via a disentangle meta-controller, by discovering factors of variation within the prior knowledge data received from a data stream, and obtaining an evaluation for a downstream task, via a child network, to obtain an optimal child model and a feature disentangle strategy.

    ANOMALY DETECTION WITH GRAPH ADVERSARIAL TRAINING IN COMPUTER SYSTEMS

    公开(公告)号:US20210067549A1

    公开(公告)日:2021-03-04

    申请号:US17004752

    申请日:2020-08-27

    Abstract: Methods and systems for detecting and responding to an intrusion in a computer network include generating an adversarial training data set that includes original samples and adversarial samples, by perturbing one or more of the original samples with an integrated gradient attack to generate the adversarial samples. The original and adversarial samples are encoded to generate respective original and adversarial graph representations, based on node neighborhood aggregation. A graph-based neural network is trained to detect anomalous activity in a computer network, using the adversarial training data set. A security action is performed responsive to the detected anomalous activity.

    FLEXIBLE EDGE-EMPOWERED GRAPH CONVOLUTIONAL NETWORKS WITH NODE-EDGE ENHANCEMENT

    公开(公告)号:US20210064959A1

    公开(公告)日:2021-03-04

    申请号:US16998280

    申请日:2020-08-20

    Abstract: Systems and methods for predicting road conditions and traffic volume is provided. The method includes generating a graph of one or more road regions including a plurality of road intersections and a plurality of road segments, wherein the road intersections are represented as nodes and the road segments are represented as edges. The method can also include embedding the nodes from the graph into a node space, translating the edges of the graph into nodes of a line graph, and embedding the nodes of the line graph into the node space. The method can also include aligning the nodes from the line graph with the nodes from the graph, and optimizing the alignment, outputting a set of node and edge representations that predicts the traffic flow for each of the road segments and road intersections based on the optimized alignment of the nodes.

    REAL-TIME THREAT ALERT FORENSIC ANALYSIS
    98.
    发明申请

    公开(公告)号:US20200250308A1

    公开(公告)日:2020-08-06

    申请号:US16781366

    申请日:2020-02-04

    Abstract: Methods and systems for security monitoring and response include assigning an anomaly score to each of a plurality of event paths that are stored in a first memory. Events that are cold, events that are older than a threshold, and events that are not part of a top-k anomalous path are identified. The identified events are evicted from the first memory to a second memory. A threat associated with events in the first memory is identified. A security action is performed responsive to the identified threat.

    AUTOMATED THREAT ALERT TRIAGE VIA DATA PROVENANCE

    公开(公告)号:US20200042700A1

    公开(公告)日:2020-02-06

    申请号:US16507353

    申请日:2019-07-10

    Abstract: A method for implementing automated threat alert triage via data provenance includes receiving a set of alerts and security provenance data, separating true alert events within the set of alert events corresponding to malicious activity from false alert events within the set of alert events corresponding to benign activity based on an alert anomaly score assigned to the at least one alert event, and automatically generating a set of triaged alert events based on the separation.

    Knowledge transfer system for accelerating invariant network learning

    公开(公告)号:US10511613B2

    公开(公告)日:2019-12-17

    申请号:US16055675

    申请日:2018-08-06

    Abstract: A computer-implemented method for implementing a knowledge transfer based model for accelerating invariant network learning is presented. The computer-implemented method includes generating an invariant network from data streams, the invariant network representing an enterprise information network including a plurality of nodes representing entities, employing a multi-relational based entity estimation model for transferring the entities from a source domain graph to a target domain graph by filtering irrelevant entities from the source domain graph, employing a reference construction model for determining differences between the source and target domain graphs, and constructing unbiased dependencies between the entities to generate a target invariant network, and outputting the generated target invariant network on a user interface of a computing device.

Patent Agency Ranking