Abstract:
A seal system is provided. The seal system may comprise a first duct having an annular geometry, a second duct overlapping the first duct in a radial direction, and a seal disposed between the first duct and the second duct. The seal may comprise a groove defined by the first duct and a piston configured to slideably engage the groove.
Abstract:
A sealing arrangement for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a groove that extends between an upstream rail and a downstream rail, a complementary static structure spaced from the groove, and a seal positioned within the groove and configured to seal a clearance between at least one of the upstream rail and the downstream rail and the complementary static structure.
Abstract:
A mid-turbine frame for a gas turbine engine according to an example of the present disclosure includes, among other things, a first frame case, a flange coupled to the first frame case, and a heat shield adjacent to the flange and between adjacent spokes. A method of cooling a portion of a gas turbine engine is also disclosed.
Abstract:
A sealing arrangement for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a groove that extends between an upstream rail and a downstream rail, a complementary static structure spaced from the groove, and a seal positioned within the groove and configured to seal a clearance between at least one of the upstream rail and the downstream rail and the complementary static structure.
Abstract:
A seal support structure for a turbomachine includes a mounting portion shaped to mount to a stationary structure of a turbomachine and a cylindrical leg portion disposed on the mounting portion extending axially from the mounting portion. The cylindrical leg portion can include a radially extending flange. The flange can extend at an angle of 90 degrees from the end of the cylindrical leg portion. The flange can extend at least partially in an axial direction. The cylindrical leg portion can be formed integrally with the mounting portion. In embodiments, the cylindrical leg portion is not integral with the mounting portion, i.e., the cylindrical leg portion is a separate piece joined to the mounting portion.
Abstract:
Methods of manufacturing toothed components for gas turbine engines are provided. The methods include forming a first tooth in the component with a top land, a bottom land, a side wall extending therebetween, and a fillet radius transitioning between the side wall and the bottom land, forming a second tooth in the component adjacent the first tooth, the second tooth having a top land, a bottom land, a side wall extending therebetween and facing the first tooth, and a fillet radius transitioning between the side wall and the bottom land, the bottom land of the second tooth extending toward the bottom land of the first tooth, wherein the bottom lands define a gable area of the component, and forming a stress relief feature in the gable area such that the stress relief feature reduces a stress concentration near the gable area during operation of the toothed component.
Abstract:
According to one or more embodiments, a cover plate for a gas turbine engine is provided. The cover plate includes a cover plate body that extends from a disc blade attachment radially along an outside surface of a disc web to a disc bore of a disc creating a cavity between the cover plate body and the disc web of the disc, and an attachment protrusion extending from the inner most end of the cover plate body toward the disc bore, and wherein the attachment protrusion is configured to engage with a retention ring.
Abstract:
A mid-turbine frame for a gas turbine engine includes an inner frame case that includes a bolt opening and at least one spoke for connecting an outer frame case to the inner frame case that includes an inlet passage that extends in a radial direction. A central bolt extends through the bolt opening for securing at least one spoke to the inner frame case.
Abstract:
A gas-turbine engine is provided. The gas-turbine engine comprises a high pressure turbine with an aft blade platform. A static structure may be disposed aft of the high pressure turbine and proximate a cavity defined by the aft blade platform. A vane of the static structure may have a vane platform with a shaped tip extending into the cavity.
Abstract:
An interface within a gas turbine engine includes a sealing surface defined by a portion of a vane platform. A seal is in contact with said sealing surface. A barrier is transverse to the sealing surface.