Abstract:
A conductive mesoporous carbon composite comprising conductive carbon nanoparticles contained within a mesoporous carbon matrix, wherein the conductive mesoporous carbon composite possesses at least a portion of mesopores having a pore size of at least 10 nm and up to 50 nm, and wherein the mesopores are either within the mesoporous carbon matrix, or are spacings delineated by surfaces of said conductive carbon nanoparticles when said conductive carbon nanoparticles are fused with each other, or both. Methods for producing the above-described composite, devices incorporating them (e.g., lithium batteries), and methods of using them, are also described.
Abstract:
A cacao husk can be effectively used. A member comprises a burned material of cacao husk and a base material, and is sieved so that the median diameter of the burned material of cacao husk becomes approx. 85 μm or below. The member functions as a heat conducting material, an electromagnetic shielding member, etc. The content ratio of burned material of cacao husk against the base material can be determined according to the frequency band of the electromagnetic waves to be shielded. In addition, the base material can be one of rubber, paint and cement.
Abstract:
Ablation probes are provided for perfusing the tissue, while the tissue is ablated. The ablation probe comprises an elongated shaft and an ablative element, such as a needle electrode. The ablation probe further comprises a lumen that extends through the probe shaft, which will be used to deliver an fluid to the distal end of the probe shaft for perfusion into the surrounding tissue. The ablation probe further comprises a porous structure that is associated with the distal end of the shaft in fluid communication with the lumen. For example, the distal end of the shaft, or the entirety of the shaft, can be composed of the porous structure. Or, if the ablative element is an electrode, the electrode can be composed of the porous structure. Because the pores within the porous structure are pervasive, the fluid will freely flow out into the tissue notwithstanding that some of the pores may become clogged.
Abstract:
Improved deep well grounding systems of the kind used for cathodic protection of ground installations according to the invention employ a combination of materials for the casing of the central metallic anode and the backfill in the well which exhibit a degree of permeability sufficient to allow by-product gases develop in ordinary use of this system to escape, avoiding unwanted cavitation, while minimizing the migration of ground water and the attendant undesirable environmental pollution.
Abstract:
Compositions are provided for increasing the electrical conductivity of concrete or controlled low-strength materials (flowable fill). One composition sets to produce a concrete and includes portland cement, water, aggregate, and particulate matter including a sorbent and a contaminant absorbed, adsorbed or entrapped by the sorbent. The sorbent may be activated carbon, and the contaminant may be mercury or a compound containing mercury. Another composition is a self-compacting, cementitious flowable fill composition that includes portland cement, water, and particulate matter including a sorbent and a contaminant absorbed, adsorbed or entrapped by the sorbent. The sorbent may activated carbon, and the contaminant may be mercury or a compound containing mercury. The compositions may also include carbon fibers.
Abstract:
It is an object of the present invention to provide a porous body containing an oxide semiconductor in which more efficient photocatalytic reactions and photoelectrode reactions occur. The present invention relates to a porous body having a network structure skeleton wherein 1) the aforementioned skeleton is composed of an inner part and a surface part, 2) the aforementioned inner part is substantially made of carbon material, and 3) all or part of the aforementioned surface part is an oxide semiconductor, and to a manufacturing method therefor.
Abstract:
Improved deep well grounding systems of the kind used for cathodic protection of ground installations according to the invention employ a combination of materials for the casing of the central metallic anode and the backfill in the well which exhibit a degree of permeability sufficient to allow by-product gases develop in ordinary use of this system to escape, avoiding unwanted cavitation, while minimizing the migration of ground water and the attendant undesirable environmental pollution.
Abstract:
A carbon foam material with improved graphitizability is formed by including a graphitization promoting additive into the carbon foam. The graphitization promoting additive greatly improves the graphitic structure of the carbon foam resulting in a carbon foam with much greater thermal and electrical conductivities. This inventive foam may be created by introducing the graphitization promoting additive during the catalysis of a phenol-aldehyde mixture to a form phenolic resin or during the conversion of the phenolic resin to a phenolic foam. Alternatively, the graphitization promoting additive can be fixed onto a preformed carbon foam.
Abstract:
A membrane structure is provided. A membrane structure has a top surface and a bottom surface. The membrane structure includes a plurality of sintered layers including an inner layer disposed between two outer layers. The membrane structure further includes a nonmonotonic gradient in pore size extending between the top surface and the bottom surface. A method of making a membrane structure is provided. The method includes the steps of providing at least one inner layer; providing a plurality of outer layers; and laminating the inner layer and the outer layers to obtain a membrane structure.
Abstract:
A method for forming an electrically conductive graphite concrete block includes mixing cement, sands, stones, electrically conductive graphite powders, and water and stirring the mixture to form graphite concrete slurry; filling the graphite concrete slurry into a mold chamber of a mold device, with two electrodes formed on a surface of the graphite concrete slurry; pressing the graphite concrete slurry with high pressure to drain liquid in the graphite concrete slurry to form a blank for an electrically conductive graphite concrete block; opening the mold device to release the blank; and placing the blank statically for a period of time to form an electrically conductive graphite concrete block. Preferably, the mold device includes a bottom board including a plurality of drain holes. A sieve device is mounted above the drain holes, allowing the liquid in the graphite concrete slurry to drain via the sieve device and the drain holes.