Abstract:
An EUV optical apparatus includes a number of adjustable mirrors (22x) on mirror bodies (120). Each mirror body is supported on an actuator (100x) comprising a moving part (132, 134, 136) and a fixed casing part (128, 130). The actuator provides a resilient support (140, 142) for the mirror body so that it is tiltable with two degrees relative to the casing. An electromagnetic motor (166, 170-178) applies first part, under the influence of an applied motive force, the resilient mounting being arranged to provide a biasing force that resists said motive force. A magnetic coupling (102, 104a, 104b) is arranged between the moving and fixed parts so as to provide a counter-biasing force. The counter-biasing force partly opposes said biasing force and thereby reduces the motive force required to effect a given displacement. The actuator can thus be made with reduced size, weight and heat dissipation.
Abstract:
A method for displacing an optical component is disclosed, in which the electrical power maximally required when displacing the component is less than the sum of the maximum electrical powers of the at least two actuators used for the displacement.
Abstract:
The invention relates to an arrangement for mounting an optical element, in particular in an EUV projection exposure apparatus, comprising a weight force compensation device for exerting a compensation force on the optical element, wherein the compensation force at least partly compensates for the weight force acting on the optical element, wherein the weight force compensation device has a passive magnetic circuit for generating a force component of the compensation force acting on the optical element, and wherein at least one adjustment element is provided via which the force component generated by the passive magnetic circuit is continuously adjustable.
Abstract:
A system of exterior mirrors having a mirror head and a mirror foot, the system including a first mirror which is configured to rotate about and also move vertically along a first axis defined by a first drive for the first mirror, and a second mirror which is configured to rotate about a second axis defined by a second drive for the second mirror.
Abstract:
The invention relates to an arrangement for actuating an element in an optical system, in particular an optical system of a projection exposure apparatus, wherein the optical element is tiltable about at least one tilting axis via at least one joint having a joint stiffness, comprising at least one actuator for exerting a force on the optical element, wherein the actuator has an actuator stiffness which at least partly compensates for the joint stiffness.
Abstract:
The invention relates to an arrangement for mounting an optical element, in particular in an EUV projection exposure apparatus, comprising a weight force compensation device (103) for exerting a compensation force on the optical element (101), wherein said compensation force at least partly compensates for the weight force acting on the optical element (101), wherein the weight force compensation device (103) has a passive magnetic circuit for generating a force component of the compensation force acting on the optical element (101), and wherein at least one adjustment element (880) is provided by means of which the force component generated by the passive magnetic circuit is continuously adjustable.
Abstract:
An optical scanning or positioning mechanism has a head on which optical components are mounted and an actuator coupled to the head to cause the head to move when the actuator is actuated. There are one or more sets of flexure bearings mounted in the mechanism. The flexure bearings have a restoring torque when moved from a rest position. The bearings are coupled to the head to allow the head to move when actuated by the actuator. One or more magnets are mounted in the mechanism in a location other than in the actuator to compensate for the flexure bearings restoring torque.
Abstract:
The invention claimed is a novel magnetic mirror air bearing for a Michelson interferometer with lateral motion. A precise kinematic mount is used in combination with magnetic fields wherein current can be applied on a centerline to move a piston and mirror laterally without pitch and yaw so as to effect accurate light beam reflection regardless of distance of lateral movement within a defined space. The assembly is able to operate across extended temperature ranges by utilizing materials which expand and contract at similar rates, and contains a thermalizing cavity which will thermalize the gas to avoid temperature induced artifacts.
Abstract:
An object of the present invention is to provide an optical deflecting device capable of suppressing undesirable vibrations of an optical deflecting element such as a mirror and allowing a plurality of optical deflecting elements to be easily arranged. The optical deflecting device is characterized in that the device has: a moving body 21 having at least two optical deflecting elements 1,31 held to face each other; supporting means having a first supporting member 32 pivot-connected to the moving body 21 between the two optical deflecting elements 1,31, so as to support the moving body 21 to a stationary body 22 such that the moving body 21 is tiltable around at least a first axis; and first driving means 26, 27, 41, 43 for driving the moving body 21 around the first axis.
Abstract:
A method and apparatus for supporting a movable member (10) with respect to a fixed member (40) is provided. The movable member (10) includes a magnetically permeable portion (81) contained therein and magnetic element (50) fixedly attached thereto and movable therewith. The movable member (10) is supported for rotation with respect to the fixed member (40) by an outer bearing surface (11) of the movable member and an inner bearing surface (20) of the fixed member (40). The fixed member (40) provides access to the movable member (10) from two sides thereof. A magnetically permeable stator element (70) is fixedly attached to the fixed member (40) and positioned within a magnetic flux field of the magnetic element (50) such that an air gap (73) is formed between the magnetic element (50) and the stator element (70). Accordingly a magnetic traction force acts across the air gap (73) for urging the moveable member (10) toward the fixed member (40) thereby clamping the movable element in a fixed orientation with respect to the movable element. The stator element (70) includes stator current coils (60) wound onto portions of the stator element for inducing electromagnetic forces within the stator element in response to a current passing through the coils. The electromagnetic force acts on the magnetic element (50) to move the movable member (10) in a controllable manner.