SEMI-SUPERVISED FRAMEWORK FOR EFFICIENT TIME-SERIES ORDINAL CLASSIFICATION

    公开(公告)号:US20230252302A1

    公开(公告)日:2023-08-10

    申请号:US18152238

    申请日:2023-01-10

    CPC classification number: G06N3/0895 G06N3/0442

    Abstract: A computer-implemented method for ordinal prediction is provided. The method includes encoding time series data with a temporal encoder to obtain latent space representations. The method includes optimizing the temporal encoder using semi-supervised learning to distinguish different classes in the labeled space using labeled data, and augment the latent space representations using unlabeled training data, to obtain semi-supervised representations. The method further includes discarding a linear layer after the temporal encoder and fixing the temporal encoder. The method also includes training k−1 binary classifiers on top of the semi-supervised representations to obtain k−1 binary predictions. The method additionally includes identifying and correcting inconsistent ones of the k−1 binary predictions by matching the inconsistent ones to consistent ones of the k−1 binary predictions. The method further includes aggregating the k−1 binary predictions to obtain an ordinal prediction.

    SUPERCLASS-CONDITIONAL GAUSSIAN MIXTURE MODEL FOR PERSONALIZED PREDICTION ON DIALYSIS EVENTS

    公开(公告)号:US20230094623A1

    公开(公告)日:2023-03-30

    申请号:US17950203

    申请日:2022-09-22

    Abstract: A computer-implemented method for model building is provided. The method includes receiving a training set of medical records and model hyperparameters. The method further includes initializing an encoder as a Dual-Channel Combiner Network (DCNN) and initialize distribution related parameters. The method also includes performing, by a hardware processor, a forward computation to (1) the DCNN to obtain the embeddings of the medical records, and (2) the distribution related parameters to obtain class probabilities. The method additionally includes checking by a convergence evaluator if the iterative optimization has converged. The method further includes performing model personalization responsive to model convergence by encoding the support data of a new patient and using the embeddings and event subtype labels to train a personalized classifier.

    Node classification in dynamic networks using graph factorization

    公开(公告)号:US11606393B2

    公开(公告)日:2023-03-14

    申请号:US17004547

    申请日:2020-08-27

    Abstract: Methods and systems for detecting and responding to anomalous nodes in a network include inferring temporal factors, using a computer-implemented neural network, that represent changes in a network graph across time steps, with a temporal factor for each time step depending on a temporal factor for a previous time step. An invariant factor is inferred that represents information about the network graph that does not change across the time steps. The temporal factors and the invariant factor are combined into a combined temporal-invariant representation. It is determined that an unlabeled node is anomalous, based on the combined temporal-invariant representation. A security action is performed responsive to the determination that unlabeled node is anomalous.

    MODEL PERSONALIZATION SYSTEM WITH OUT-OF-DISTRIBUTION EVENT DETECTION IN DIALYSIS MEDICAL RECORDS

    公开(公告)号:US20230076575A1

    公开(公告)日:2023-03-09

    申请号:US17883729

    申请日:2022-08-09

    Abstract: A method for making prognostic prediction scores during a pre-dialysis period on an incidence of events in future dialysis includes learning a meta-training model that simultaneously classifies dialysis in-distribution events and detects out-of-distribution (OOD) events during model personalization by employing a data preprocessing component to extract different parts of data from historical medical records of patients to generate a meta-training dataset, a meta-training component to analyze the meta-training dataset, the meta-training component including a class pool generator, a task generator, a prototype network, an attention component, and a model training component, the class pool generator splitting training classes into a first class pool and a second class pool for generating a distribution statistics dictionary, a storage component to store the meta-training model for distribution to local machines, and a personalization component including a local data collection component, and a class and OOD detector component.

    COMPUTER CODE REFACTORING
    109.
    发明申请

    公开(公告)号:US20220374232A1

    公开(公告)日:2022-11-24

    申请号:US17739727

    申请日:2022-05-09

    Abstract: Systems and methods are provided for automated computer code editing. The method includes training a code-editing neural network model using a corpus of code editing data samples, including the pre-editing samples and post-editing samples, and parsing the pre-editing samples and post-editing samples into an Abstract Syntax Tree (AST). The method further includes using a grammar specification to transform the AST tree into a unified Abstract Syntax Description Language (ASDL) graph for different programming languages, and using a gated graph neural network (GGNN) to compute a vector representation for each node in the unified Abstract Syntax Description Language (ASDL) graph. The method further includes selecting and aggregating support samples based on a query code with a multi-extent ensemble method, and altering the query code iteratively using the pattern learned from the pre- and post-editing samples.

Patent Agency Ranking