Abstract:
A communication system includes: a validation module configured to transmit a repeat request corresponding to a preceding data including a communication content; an inter-block processing module, coupled to the validation module, configured to determine a previous communication value based on the preceding data; a detection module, coupled to the inter-block processing module, configured to identify a repeat data corresponding to the repeat request from a receiver signal; an accumulator module, coupled to the detection module, configured to generate an accumulation output based on the preceding data and the repeat data; and a decoding module, coupled to the accumulator module, configured to determine the communication content using the previous communication value and the accumulation output across instances of transmission blocks for communicating with a device.
Abstract:
A method for training a generator, by a generator training system including a processor and memory, includes: extracting training statistical characteristics from a batch normalization layer of a pre-trained model, the training statistical characteristics including a training mean μ and a training variance σ2; initializing a generator configured with generator parameters; generating a batch of synthetic data using the generator; supplying the batch of synthetic data to the pre-trained model; measuring statistical characteristics of activations at the batch normalization layer and at the output of the pre-trained model in response to the batch of synthetic data, the statistical characteristics including a measured mean, and {circumflex over (μ)}ψ measured variance {circumflex over (σ)}ψ2; computing a training loss in accordance with a loss function Lψ based on μ, σ2, {circumflex over (μ)}ψ, and {circumflex over (σ)}ψ2; and iteratively updating the generator parameters in accordance with the training loss until a training completion condition is met to compute the generator.
Abstract:
A convolutional neural network (CNN) system for generating a classification for an input image is presented. The CNN system comprises circuitry running on clock cycles and configured to compute a product of two received values, and at least one non-transitory computer-readable medium that stores instructions for the circuitry to derive a feature map based on at least the input image; puncture at least one selection among the feature map and a kernel by setting the value of an element at an index of the at least one selection to zero and cyclic shifting a puncture pattern to achieve a 1/d reduction in number of clock cycles, where d is an integer and puncture interval value >1. The feature map is convolved with the kernel to generate an output, and a classification of the input image is generated based on the output.
Abstract:
A system for performing echo cancellation includes: a processor configured to: receive a far-end signal; record a microphone signal including: a near-end signal; and an echo signal corresponding to the far-end signal; extract far-end features from the far-end signal; extract microphone features from the microphone signal; compute estimated near-end features by supplying the microphone features and the far-end features to an acoustic echo cancellation module including a recurrent neural network including: an encoder including a plurality of gated recurrent units; and a decoder including a plurality of gated recurrent units; compute an estimated near-end signal from the estimated near-end features; and transmit the estimated near-end signal to the far-end device. The recurrent neural network may include a contextual attention module; and the recurrent neural network may take, as input, a plurality of error features computed based on the far-end features, the microphone features, and acoustic path parameters.
Abstract:
A method and system for multi-frame contextual attention are provided. The method includes obtaining a reference frame to be processed, identifying context frames with respect to the reference frame, and producing a refined reference frame by processing the obtained reference frame based on the context frames.
Abstract:
A method for computing a dominant class of a scene includes: receiving an input image of a scene; generating a segmentation map of the input image, the segmentation map being labeled with a plurality of corresponding classes of a plurality of classes; computing a plurality of area ratios based on the segmentation map, each of the area ratios corresponding to a different class of the plurality of classes of the segmentation map; and outputting a detected dominant class of the scene based on a plurality of ranked labels based on the area ratios.
Abstract:
Apparatuses (including user equipment (UE) and modern chips for UEs), systems, and methods for UE downlink Hybrid Automatic Repeat reQuest (HARQ) buffer memory management are described. In one method, the entire UE DL HARQ buffer memory space is pre-partitioned according to the number and capacities of the UE's active carrier components. In another method, the UE DL HARQ buffer is split between on-chip and off-chip memory so that each partition and sub-partition is allocated between the on-chip and off-chip memories in accordance with an optimum ratio.
Abstract:
A system for disparity estimation includes one or more feature extractor modules configured to extract one or more feature maps from one or more input images; and one or more semantic information modules connected at one or more outputs of the one or more feature extractor modules, wherein the one or more semantic information modules are configured to generate one or more foreground semantic information to be provided to the one or more feature extractor modules for disparity estimation at a next training epoch.
Abstract:
A method for computing a dominant class of a scene includes: receiving an input image of a scene; generating a segmentation map of the input image, the segmentation map being labeled with a plurality of corresponding classes of a plurality of classes; computing a plurality of area ratios based on the segmentation map, each of the area ratios corresponding to a different class of the plurality of classes of the segmentation map; and outputting a detected dominant class of the scene based on a plurality of ranked labels based on the area ratios.
Abstract:
A method of depth detection based on a plurality of video frames includes receiving a plurality of input frames including a first input frame, a second input frame, and a third input frame respectively corresponding to different capture times, convolving the first to third input frames to generate a first feature map, a second feature map, and a third feature map corresponding to the different capture times, calculating a temporal attention map based on the first to third feature maps, the temporal attention map including a plurality of weights corresponding to different pairs of feature maps from among the first to third feature maps, each weight of the plurality of weights indicating a similarity level of a corresponding pair of feature maps, and applying the temporal attention map to the first to third feature maps to generate a feature map with temporal attention.