Abstract:
An autonomous underwater vehicle (AUV) for recording seismic signals during a marine seismic survey. The AUV includes a body having a flush shape; an intake water element located on the body and configured to take in water; at least one propulsion nozzle located on the body and configured to eject the water from the intake water element for actuating the AUV; at least one guidance nozzle located on the body and configured to eject water to change a traveling direction of the AUV; and a seismic payload located on the body of the AUV and configured to record seismic signals.
Abstract:
Method and system is described for enhanced subsea leak detection by using autonomous underwater vehicle (AUV) that is equipment with measurement components and navigation components. The method and system may include a one or more wireless communication components for navigation. Also, the method and system may include one or more sensors to detect leakage from a pipeline.
Abstract:
An unmanned ocean-going vessel including a primary hull, a rigid wing rotationally coupled with the primary hull where the rigid wing freely rotates about a rotational axis of the rigid wing, a controller configured to maintain a desired heading, a control surface element configured to aerodynamically control a wing angle of the rigid wing based on a position of the control surface element, where the controller is configured to determine a control surface angle and generate a signal to position the control surface element based on the control surface angle, a rudder, where the controller is further configured to determine a rudder position and generate a signal to position the rudder to the rudder position, and a keel including ballast sufficient to provide a positive righting moment sufficient to cause the primary hull to passively right from any position.
Abstract:
A subsea payload such as an AUV (autonomous underwater vehicle) or an AUV garage is lifted from an underwater location by flying a latch unit through the water to the payload. The latch unit carries a lift line toward the payload. The latch unit is then attached to the payload and the payload is lifted using tension applied through the lift line via the latch unit. The latch unit can also be used on a lift line to lower a payload and then to release the payload at an underwater location. The lift line is supported by a heave-compensating winch on a surface vessel that effects z-axis movement of the latch unit. The winch maintains tension on the lift line to prevent the lift line falling on the payload. Movement of the latch unit on x- and y-axes is effected by on-board thrusters.
Abstract:
Systems and methods are described herein for launching, recovering, and handling a large number of vehicles on a ship to enable lower cost ocean survey. In one aspect, the system may include a shipping container based system with an oil services vessel. The vessel may include rolling systems through end to end shipping containers. One or more columns of containers may be accessed using a crane, an A-frame, or any other suitable transportation system. The system may enable the ability to launch or recover more than one vehicle using the launch and recovery system (e.g., AUVs, buoys, seaplanes, autonomous surface vessels, etc.). In one configuration, the system includes a stacking/elevator system to place the vehicles onto a second or higher layer of containers. The system may allow for modularized deployment of the vehicles, launch and recovery system, operation center, and more from self-contained shipping containers.
Abstract:
Systems and methods for deployment and retrieval of ocean bottom seismic receivers. In some embodiments, the system includes a carrier containing receivers. The carrier can include a frame having a mounted structure (e.g., a movable carousel, movable conveyor, fixed parallel rails, or a barrel) for seating and releasing the receivers (e.g., axially stacked). The structure can facilitate delivering receivers to a discharge port on the frame. The system can include a discharge mechanism for removing receivers from the carrier. In some embodiments, the method includes loading a carrier with receivers, transporting the carrier from a surface vessel to a position adjacent the seabed, and using an ROV to remove receivers from the carrier and place the receivers on the seabed. In some embodiments, an ROV adjacent the seabed engages a deployment line that guides receivers from the vessel down to the ROV for “on-time” delivery and placement on the seabed.
Abstract:
A coupling head 8, coupled to an autonomous underwater vehicle 4 via a rendezvous head 18 that is connectable to or part of the underwater vehicle 4. The coupling head 8 has an alignment stabilizing arrangement 12 for stabilizing its alignment and position in the water below the water surface. The invention further relates to a coupling device 2 having the coupling head 8 and having a cable 10 which is detachably connectable, mechanically, electrically and in a signal-connecting manner, to the coupling head 8, and to a rendezvous device 16 having the rendezvous head 18. The underwater vehicle 4 has the rendezvous head 18 and/or the rendezvous device 16, and a coupling system 1, which comprises at least the coupling and rendezvous heads. The invention further relates to a coupling method 58 and a deployment method 56 of an autonomous underwater vehicle 4 which includes the coupling method 58.
Abstract:
An autonomous underwater vehicle (AUV) for recording seismic signals during a marine seismic survey. The AUV includes a body extending along an axis X and having a head portion, a middle portion, and a tail portion, wherein the middle portion is sandwiched between the head portion and the tail portion along the X axis; a cross-section of the middle portion, substantially perpendicular on the X axis, having a triangular-like shape; the head portion including a base portion having the triangular-like shape and configured to match the middle portion; the head portion having a tip that, when projected along the X axis on the base portion, substantially coincides with a centroid of the base portion having the triangular-like shape; and a seismic payload located within the body and configured to record seismic signals.
Abstract:
A deployment and retrieval apparatus for ocean bottom seismic receivers, the apparatus being a remotely operated vehicle (ROV) having a carrier attached thereto and carrying a plurality of receivers. The carrier comprises a frame in which is mounted a structure for seating and releasing said receivers. The structure may comprise a movable carousel or a movable conveyor or fixed parallel rails or a barrel. The structure includes a discharge port on said frame and a discharge mechanism for removing and retrieving said receivers. A method for deployment and retrieval of ocean bottom seismic receivers comprises the steps of loading a carrier with a plurality of receivers, attaching said carrier to an ROV, utilizing said ROV to transport the carrier from a surface vessel to a position adjacent the seabed and thereafter utilizing said ROV to remove receivers from said carrier and place the receivers on the seabed.
Abstract:
An underwater thruster includes a housing unit having a first opening, a cover unit connected to the housing unit and covering the first opening, a supporting unit connected to the housing unit, a motor having a driving shaft that extends through the first opening, a magnetic core unit connected to the driving shaft, a plurality of magnetic intermediate units disposed on the supporting unit and driven by the magnetic core unit, a magnetic surrounding unit driven by the magnetic intermediate units in a rotational speed smaller than the rotational speed of the magnetic core unit, and a propelling unit connected to the magnetic surrounding unit and having a plurality of angularly spaced-apart blades.