Abstract:
A method for the production of a hydrogen-containing gas composition, such as a synthesis gas including hydrogen and carbon monoxide. The molar ratio of hydrogen to carbon monoxide (H2:CO) in the synthesis gas can be well-controlled to yield a ratio that is adequate for the synthesis of useful products such as methane or methanol, without the need to remove carbon oxides from the gas stream to adjust the ratio.
Abstract translation:一种含氢气体组合物的制造方法,例如包括氢气和一氧化碳的合成气体。 合成气中氢与一氧化碳(H 2 CO 2)的摩尔比可以很好地控制,以产生足够的合成有用产物如甲烷或甲醇的比例,没有 需要从气流中除去碳氧化物以调节比例。
Abstract:
The aim of the invention is to provide a method for gasifying organic materials which is simple to carry out and requires minimal equipment and which produced an undiluted gas of high calorific value. The inventive method should eliminate the need to use fluid beds and heat exchangers with high temperatures on both sides, with the heat being transferred from the furnace to a heat-carrying medium in a particularly defined way. To this end, the feed material is divided into a volatile phase and a solid carbon-containing residue in the pyrolysis reactor by circulating a hot heat-carrying medium. After the reaction agent has been added, said volatile phase is converted into the product gas by further heating in the reaction area, also using the heat-carrying medium. The solid, carbon-containing residue is separated from the heat-carrying medium in the separating stage and burnt in the furnace. The heat-carrying medium is heated by the waste gases of the furnace in the heating area and then returned to the reformer and then the pyrolysis reactor.
Abstract:
Method and apparatus for gasifying carbonaceous material, in which (a) product gas and ash, residual carbon a gasified tar compounds entrained therewith are discharged from a gasifying reactor to a product gas channel and cooled in a gas cooler, whereby tar compounds condense in a liquid state and tend to stick on heat surfaces; (b) solids containing ash particles and residual carbon separated from the gasification system, preferably from its product gas, are supplied to an ash reactor, in which the residual carbon reacts with oxygen and ash particles and exhaust gas is generated; and (c) ash particles are supplied to the gas cooler or upstream from the gas cooler, whereby the ash content entrained with the product gas increases and the sticking of condensing tar compounds on the heat surfaces decreases.
Abstract:
A method and apparatus for efficiently forming a gaseous material from a solid starting material. The produced gaseous material includes a CGE HHV having a high percentage of an original HHV of the starting material. The gaseous product may be used to form a plurality of materials for various purposes.
Abstract:
A process and gas generator is disclosed for generating by dry distillation of solids and gasification of solids, a fuel gas substantially free of condensable dry distillation volatiles which would interfere with the intended use of the gas, e.g. for powering an internal combustion engine.To achieve this, solids beds in distinct dry distillation and gasification zones are maintained under conditions favouring thermal cracking of condensable (tar) volatiles in the hot regions of both zones. For optimal control of these conditions these zones are physically separated by internals within a single reactor vessel and optionally by performing part of the dry distillation (pyrolysis) in a separate reactor vessel, in which case pyrolysis volatiles are fed in counter-current to the dry distillation bed, withdrawn from the top thereof and fed into and through the embers bed of the gasification zone. Thermal cracking of pyrolysis volatiles is prolonged and intensified by the manner in which these volatiles are conducted in intimate contact through the embers bed of the gasification zone in co-current therewith. The embers bed is guided along a progressively constricting pathway, which controls the rate of travel of and the period of residence of the solids bed in the process and generator.
Abstract:
A device for introducing hot gas into a heating surface pipe of a waste heat boiler includes an outer pipe that is connected to the boiler wall, preferably to the bottom of the pipe. The device also includes an inner pipe or entry pipe that has an admission section that is cylindrical or conically narrows and also has a discharge section that is connected to the heating surface pipe. The inner pipe is connected to the outer pipe via a rounded reversible cap while forming an entry opening for the hot gas. The inner pipe is surrounded by the outer pipe at a distance. The device also includes a coolant guiding pipe, which is placed between the outer pipe and the inner pipe and which extends into the proximity of the reversible cap. The guiding pipe is provided in the form of a force-transmitting component and is connected, in a removable or fixed manner, both to the inner pipe as well as to the outer pipe each time with at least three connecting ribs which are uniformly distributed over the periphery and which are provided for introducing or transferring forces.
Abstract:
The invention relates to a method and a device for carbonizing large pieces of solid fuels, preferably bio fuels and is particularly suitable for gasifying large bales of grain straw and hay, which have not been comminuted. It is an object of the invention to provide a device and a method, with which whole bales and other large pieces of gasifiable material can be broken down under controlled conditions with little thermal energy.
Abstract:
An apparatus and method for treating the off-gas byproduct of a waste treatment system using a plasma torch. The off-gas of a graphite electrode plasma arc furnace includes carbon black or soot which must be removed. The plasma torch employs a carbon dioxide and oxygen mixture as a working gas to avoid the creation of nitrogen oxides and other toxic by-products. The plasma torch ionizes the working gas, resulting in the creation of carbon monoxide and reactive oxygen, which assists in eliminating carbon black/soot from the off-gas. Oxygen and steam are atomized and injected into the chamber housing the plasma torch system. A process control feedback system monitors the content of the output gas and controls the operation of the injectors and the plasma torch.
Abstract:
A novel process and apparatus for power generation from biomass and other carbonaceous feedstocks are provided. The process integrates a pulse combustor steam reformer with a fuel cell to generate electricity such that (i) efficiencies are higher than those of conventional and emerging advanced power systems, and (ii) emissions are lower than those proposed by the new environmental regulations, i.e. one-tenth of the New Source Performance Standards. The pulse combustor steam reformer generates a hydrogen-rich, medium-Btu fuel gas that is electrochemically oxidized in the fuel cell to generate electricity. The apparatus may be configured to produce only power or combined heat and power.
Abstract:
A method of producing syn gas from biomass or other carbonaceous material utilizes a controlled devolatilization reaction in which the temperature of the feed material is maintained at less than 450null F. until most available oxygen is consumed. This minimizes pyrolysis of the feed material. The method and apparatus utilizes the formed synthesis gas to provide the energy for the necessary gasification. This provides for a high purity syn gas and avoids production of slag.