Abstract:
Systems and methods are provided for providing patch size adaptation for patch-based image enhancement operations. In one embodiment, an image manipulation application receives an input image. The image manipulation application compares a value for an attribute of at least one input patch of the input image to a threshold value. Based on comparing the value for the to the threshold value, the image manipulation application adjusts a first patch size of the input patch to a second patch size that improves performance of a patch-based image enhancement operation as compared to the first patch size. The image manipulation application performs the patch-based image enhancement operation based on one or more input patches of the input image having the second patch size.
Abstract:
A nonlinear self-calibration technique that may, for example, be used to convert a projective reconstruction to metric (Euclidian) reconstruction. The self-calibration technique may use a nonlinear least squares optimization technique to infer the parameters. N input images and a projective reconstruction for each image may be obtained. At least two sets of initial values may be determined for an equation to be optimized according to the nonlinear optimization technique to generate a metric reconstruction for the set of N images. The equation may then be optimized using each set of initial values according to the nonlinear optimization technique. The result with a smaller cost may be selected. The metric reconstruction is output. The output may include, but is not limited to, focal length, rotation, and translation values for the N images.
Abstract:
A robust system and method for estimating camera rotation in image sequences. A rotation-based reconstruction technique is described that is directed to performing reconstruction for image sequences with a zero or near-zero translation component. The technique may estimate only the rotation component of the camera motion in an image sequence, and may also estimate the camera intrinsic parameters if not known. Input to the technique may include an image sequence, and output may include the camera intrinsic parameters and the rotation parameters for all the images in the sequence. By only estimating a rotation component of camera motion, the assumption is made that the camera is not moving throughout the entire sequence. However, the camera is allowed to rotate and zoom arbitrarily. The technique may support both the case where the camera intrinsic parameters are known and the case where the camera intrinsic parameters are not known.
Abstract:
Methods and apparatus for describing a projection model, used by a panoramic image stitching module to generate panoramic images and for communicating the projection model to other processes. A post-processing module may access and use the projection model provided by the panoramic image stitching module to perform one or more post-processing methods on the panoramic image, rather than requiring the user to input the projection model via a user interface or requiring the post-processing module to estimate the projection model according to a mathematical analysis of the panoramic image.